Hybrid Planning Using Flexible Strategies

  • Bernd Schattenberg
  • Andreas Weigl
  • Susanne Biundo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3698)


In this paper we present a highly modular planning system architecture. It is based on a proper formal account of hybrid planning, which allows for the formal definition of (flexible) planning strategies. Groups of modules for flaw detection and plan refinement provide the basic functionalities of a planning system. The concept of explicit strategy modules serves to formulate and implement strategies that orchestrate the basic modules. This way a variety of fixed plan generation procedures as well as novel flexible planning strategies can easily be implemented and evaluated. We present a number of such strategies and show some first comparative performance results.


Strategy Module Planning Strategy Variable Constraint Partial Plan Flexible Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castillo, L., Fdez-Olivares, J., González, A.: On the adequacy of hierarchical planning characteristics for real-world problem solving. In: Proc. of 6th European Conference on Planning (ECP 2001) (2001)Google Scholar
  2. 2.
    Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary report on combining state abstraction and HTN planning. In: Cesta, A., Borrajo, D. (eds.) Proc. of 6th European Conference on Planning, ECP 2001 (2001)Google Scholar
  3. 3.
    Estlin, T.A., Chien, S.A., Wang, X.: An argument for a hybrid HTN/operator-based approach to planning. In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS (LNAI), vol. 1348, pp. 182–194. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Tsuneto, R., Nau, D., Hendler, J.: Plan-refinement strategies and search-space size. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 414–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    McCluskey, T.L.: Object transition sequences: A new form of abstraction for HTN planners. In: Chien, S., Kambhampathi, R., Knoblock, C. (eds.) Proc. of 5th International Conference on Artificial Intelligence Planning Systems (AIPS 2000), pp. 216–225. AAAI, Menlo Park (2000)Google Scholar
  6. 6.
    Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple hierarchical ordered planner. In: Dean, T. (ed.) Proc. of 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 968–975. Morgan Kaufmann, San Francisco (1999)Google Scholar
  7. 7.
    Joslin, D., Pollack, M.: Least-cost flaw repair: A plan refinement strategy for partial-order planning. In: Hayes-Roth, B., Korf, R. (eds.) Proc. of 12th National Conference on Artificial Intelligence (AAAI 1994), pp. 1004–1009. AAAI, Menlo Park (1994)Google Scholar
  8. 8.
    Gerevini, A., Schubert, L.: Accelerating partial-order planners: Some techniques for effective search control and pruning. Journal of Artificial Intelligence Research (JAIR) 5, 95–137 (1996)Google Scholar
  9. 9.
    Tate, A., Drabble, B., Kirby, R.: O-Plan2: An architecture for command, planning and control. In: Zweben, M., Fox, M. (eds.) Intelligent Scheduling, pp. 213–240. Morgan Kaufmann, San Francisco (1994)Google Scholar
  10. 10.
    Fukunaga, A., Rabideau, G., Chien, S., Yan, D.: Towards an application framework for automated planning and scheduling. In: Proc. of 1997 Int. Symp. on AI, Robotics & Automation for Space (1997)Google Scholar
  11. 11.
    PLANFORM: An open environment for building planners (2001), Project web site at http://scom.hud.ac.uk/planform/
  12. 12.
    Yang, Q., Fong, P., Kim, E.: Design patterns for planning systems. In: Simmons, R., Veloso, M., Smith, S. (eds.) Proc. of 4th International Conference on Artificial Intelligence Planning Systems (AIPS 1998) Workshop on Knowledge Engineering and Acquisition for Planning: Bridging Theory and Practice, pp. 104–112. AAAI, Menlo Park (1998)Google Scholar
  13. 13.
    Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierarchical domains. In: Rich, C., Mostow, J. (eds.) Proc. of 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 882–888. AAAI, Menlo Park (1998)Google Scholar
  14. 14.
    Schattenberg, B., Biundo, S.: On the identification and use of hierarchical resources in planning and scheduling. In: Ghallab, M., Hertzberg, J., Traverso, P. (eds.) Proc. of 6th International Conference on Artificial Intelligence Planning Systems (AIPS 2002), pp. 263–272. AAAI, Menlo Park (2002)Google Scholar
  15. 15.
    Biundo, S., Holzer, R., Schattenberg, B.: Dealing with continuous resources in AI planning. In: Proceedings of the 4th International Workshop on Planning and Scheduling for Space (IWPSS 2004), ESA-ESOC, Darmstadt, Germany, European Space Agency Publications Division, pp. 213–218 (2004)Google Scholar
  16. 16.
    Biundo, S., Holzer, R., Schattenberg, B.: Project planning under temporal uncertainty. In: Castillo, L., Borrajo, D., Salido, M.A., Oddi, A. (eds.) Planning, Scheduling, and Constraint Satisfaction: From Theory to Practice. Frontiers in Artificial Intelligence and Applications, vol. 117, pp. 189–198. IOS Press, Amsterdam (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bernd Schattenberg
    • 1
  • Andreas Weigl
    • 1
  • Susanne Biundo
    • 1
  1. 1.Dept. of Artificial IntelligenceUniversity of UlmUlmGermany

Personalised recommendations