High-Throughput Multi-dimensional Scaling (HiT-MDS) for cDNA-Array Expression Data

  • M. Strickert
  • S. Teichmann
  • N. Sreenivasulu
  • U. Seiffert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)


Multidimensional Scaling (MDS) is a powerful dimension reduction technique for embedding high-dimensional data into a low-dimensional target space. Thereby, the distance relationships in the source are reconstructed in the target space as best as possible according to a given embedding criterion. Here, a new stress function with intuitive properties and a very good convergence behavior is presented. Optimization is combined with an efficient implementation for calculating dynamic distance matrix correlations, and the implementation can be transferred to other related algorithms. The suitability of the proposed MDS for high-throughput data (HiT-MDS) is studied in applications to macroarray analysis for up to 12,000 genes.


Multi-dimensional scaling clustering gene expression analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basalaj, W.: Proximity Visualization of Abstract Data. PhD thesis, Computer Lab, Univ. of Cambridge(2001), URL:
  2. 2.
    Buja, A., Swayne, D., Littman, M., Dean, N., Hofmann, H.: Interactive Data Visualization with Multidimensional Scaling. Report, University of Pennsylvania (2004), URL:
  3. 3.
    Cook, D., Buja, A., Cabrera, J.: Grand tour and projection pursuit. Journal of Computational and Graphical Statistics 4(3), 155–172 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gower, J.: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Taguchi, Y.h., Oono, Y.: Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21(6), 730–740 (2005)CrossRefGoogle Scholar
  7. 7.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis, 1st edn. John Wiley & Sons, Chichester (2001)CrossRefGoogle Scholar
  8. 8.
    Kaski, S.: Dimensionality reduction by random mapping: Fast similarity computation for clustering. In: Proc. of the International Joint Conf. on Neural Networks (IJCNN 1998), vol. 1, pp. 413–418. IEEE Service Center, Piscataway (1998)Google Scholar
  9. 9.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)zbMATHGoogle Scholar
  10. 10.
    Kruskal, J., Wish, M.: Multidimensional Scaling. Sage Publications, New Park (1978)Google Scholar
  11. 11.
    Naud, A., Duch, W.: Visualization of large data sets using MDS combined with LVQ. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 632–637. Physica Verlag, Heidelberg (2002)Google Scholar
  12. 12.
    Pekalska, E., de Ridder, D., Duin, R., Kraaijveld, M.: A new method of generalizing Sammon mapping with application to algorithm speed-up. In: Boasson, M., Kaandorp, J., Tonino, J., Vosselman, M. (eds.) Proc. 5th Annual Conf. of the Advanced School for Computing and Imaging, pp. 221–228. ASCI (1999)Google Scholar
  13. 13.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  14. 14.
    Strickert, M., Teichmann, S., Sreenivasulu, N., Seiffert, U.: DiPPP Online Self-Improving Linear Map for Distance-Preserving Macro-Array Data Analysis. To appear at WSOM (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Strickert
    • 1
  • S. Teichmann
    • 2
  • N. Sreenivasulu
    • 1
  • U. Seiffert
    • 1
  1. 1.Pattern Recognition Group, Gene Expression GroupInstitute of Plant Genetics and Crop Plant Research Gatersleben 
  2. 2.University of Osnabrück 

Personalised recommendations