Spatio-Temporal Organization Map: A Speech Recognition Application

  • Zouhour Neji Ben Salem
  • Feriel Mouria-beji
  • Farouk Kamoun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)

Abstract

The temporal dimension is very important to be considered in many cognitive tasks involving a decision making or a behavior in response to spatio-temporal stimuli, such as vision, speech and signal processing. Thus, the capacity of encoding, recognizing, and recalling spatio-temporal patterns is one of the most crucial features of any intelligent system either artificial or biologic. If some connexionnist or hybrid model integrates the temporal data as spatial input, few other models take them into account together internally either in training or in architecture. Temporal Organization Map TOM is one of the latest types. In this paper, we propose a model gathering saptio-temporal data coding, representation and processing based on TOM map, and yielding to a Spatio-Temporel Organization Map (STOM). For spatio-temporal data coding, we use the domain of complex numbers to represent the two dimensions together. STOM architecture is the same as TOM, however, training is ensured by the spatio-temporal Kohonen algorithm to make it able to manage complex input.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zouhour Neji Ben Salem
    • 1
  • Feriel Mouria-beji
    • 1
  • Farouk Kamoun
    • 1
  1. 1.Cristal Laboratory: Artificial Intelligence Unit, National School of Computer SciencesUniversity Campus of ManoubaTunisia

Personalised recommendations