Action Understanding and Imitation Learning in a Robot-Human Task

  • Wolfram Erlhagen
  • Albert Mukovskiy
  • Estela Bicho
  • Giorgio Panin
  • Csaba Kiss
  • Alois Knoll
  • Hein van Schie
  • Harold Bekkering
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3696)

Abstract

We report results of an interdisciplinary project which aims at endowing a real robot system with the capacity for learning by goal-directed imitation. The control architecture is biologically inspired as it reflects recent experimental findings in action observation/execution studies. We test its functionality in variations of an imitation paradigm in which the artefact has to reproduce the observed or inferred end state of a grasping-placing sequence displayed by a human model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Phil. Trans. R. Soc. Lond. B 358, 537–547 (2003)CrossRefGoogle Scholar
  2. 2.
    Bekkering, H., Wohlschläger, A., Gattis, M.: Imitation of gestures in children is goal-directed. The Quartely Journal of Experimental Psychology 53A, 153–164 (2000)CrossRefGoogle Scholar
  3. 3.
    Wohlschäger, A., Gattis, M., Bekkering, H.: Action generation and action perception in imitation: An instantiation of the ideomotor principle. Phil. Trans. R. Soc. Lond. B 358, 501–515 (2003)CrossRefGoogle Scholar
  4. 4.
    Keysers, C., Perrett, D.I.: Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Science 8, 501–507 (2004)CrossRefGoogle Scholar
  5. 5.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews 2, 661–670 (2001)CrossRefGoogle Scholar
  6. 6.
    Amari, S.: Dynamics of pattern formation in lateral-inhibitory type neural fields. Biological Cybernetics 27, 77–87 (1977)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychological Review 109, 545–572 (2002)CrossRefGoogle Scholar
  8. 8.
    Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding and goal-directed imitation (Submitted)Google Scholar
  9. 9.
    Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)CrossRefGoogle Scholar
  10. 10.
    Kassim, A., Kumar, B.V.K.V.: The wave expansion neural network. Neurocomputing 16, 237–258 (1997)CrossRefGoogle Scholar
  11. 11.
    Billard, A., Epars, Y., Calinon, S., Schaal, S., Cheng, G.: Discovering optimal imitation strategies. Robotics and Autonomous Systems 47, 69–77 (2004)CrossRefGoogle Scholar
  12. 12.
    Alissandrakis, A., Nehaniv, C.L., Dautenhahn, K.: Imitation with ALICE: Learning to imitate corresponding actions across dissimiliar embodiments. IEEE Transactions on Systems, Man, and Cybernetics- Part A. Systems and Humans 32, 482–496 (2002)CrossRefGoogle Scholar
  13. 13.
    Demiris, J., Hayes, G.: Imitation as a dual-route process featuring predictive and learning components: A biologically plausible computational model. In: Dautenhahn, K., Nehaniv, C.L. (eds.) Imitation in Animals and Artifacts, pp. 327–361. MIT Press, Cambridge (2002)Google Scholar
  14. 14.
    Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Phil. Trans. R. Soc. Lond. B 358, 593–602 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wolfram Erlhagen
    • 1
  • Albert Mukovskiy
    • 1
  • Estela Bicho
    • 2
  • Giorgio Panin
    • 3
  • Csaba Kiss
    • 3
  • Alois Knoll
    • 3
  • Hein van Schie
    • 4
  • Harold Bekkering
    • 4
  1. 1.Dept. Mathematics for Science and TechnologyUniversity of MinhoGuimaraesPortugal
  2. 2.Dept. Industrial ElectronicsUniversity of MinhoGuimaraesPortugal
  3. 3.Informatics, Chair for Robotics and Embedded SystemsTechnical University MunichGarchingGermany
  4. 4.Nijmegen Institute for Cognition and InformationRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations