Advertisement

The Distributed Weighing Problem: A Lesson in Cooperation Without Communication

  • Tibor Bosse
  • Mark Hoogendoorn
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3550)

Abstract

Cooperative problem solving without communication is an often-studied field within multi-agent research. Realistic problems investigated in this particular field are complex and difficult to model, and therefore not suitable for education. This paper presents the distributed weighing problem as a novel problem to be used for educational purposes within the domain of cooperation without communication. An example agent-based architecture is developed of which parts can be provided to students as a starting-point for practical exercises in cooperative problem solving without communication. Two example strategies are discussed and implemented using this example architecture. Moreover, it is shown how such strategies can be tested and formally validated against a number of desired properties. The educational benefits of the distributed weighing problem are presented as observed in a course for 6 groups of each 3 students.

Keywords

External World Ball Problem Educational Purpose Observation Result Sequential Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bavelas, A.: The five squares problem - An instructional aid in group cooperation. Studies in Personnel Psychology, vol. 5, pp. 29–38Google Scholar
  2. 2.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 165–178. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of Component-Based Design of Intelligent Agents. Data and Knowledge Engineering 41, 1–28 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Corkill, D., Lesser, V.: The use of meta-level control for coordination in a distributed problem solving network. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 748–756 (August 1983)Google Scholar
  5. 5.
    Dignum, F.: Agent Communication and Cooperative Information Agents. In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 191–207. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: Co-operating Sequential Processes. In: Genuys, F. (ed.) Programming Languages. Academic Press, London (1965)Google Scholar
  7. 7.
    Doran, J.E., Franklin, S., Jennings, N.R., Norman, T.J.: On Cooperation in Multi-Agent Systems. The Knowledge Engineering Review (3), 309–314 (1997)Google Scholar
  8. 8.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  9. 9.
    Genesereth, M.R., Ginsberg, M.L., Rosenschein, J.S.: Cooperation Without Communication. In: The National Conf. on AI, Philadelphia, PA, pp. 51–57 (August 1986)Google Scholar
  10. 10.
    Goodstein, R.L.: Find the penny. Mathematical Gazette, pp. 227-229 (December 1945)Google Scholar
  11. 11.
    Grossman, H.D.: The Twelve-Coin Problem. Scripta Mathematica, vol. 11, pp. 360–363 (December 1945)Google Scholar
  12. 12.
    Jonker, C.M., Treur, J., Wijngaards, W.C.A.: A Temporal Modelling Environment for Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal 4(3), 191–210 (2003)CrossRefGoogle Scholar
  13. 13.
    Rosenschein, J., Genesereth, M.: Deals among rational agents. In: Proc. of the Ninth Int. Joint Conference on Artificial Intelligence, LA, California, pp. 91–99 (August 1985)Google Scholar
  14. 14.
    Schut, M.C., Kentrop, M., Leenaarts, M., Melis, M., Miller, I.: APPROACH: Decentralised Rotation Planning for Container Barges. In: Lopez de Mataras, R., Saitta, L. (eds.) Proceedings of the Sixteenth European Conference on Artificial Intelligence (ECAI 2004), pp. 755–759. IOS Press, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Mark Hoogendoorn
    • 1
  • Catholijn M. Jonker
    • 2
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Nijmegen Institute for Cognition and InformationRadboud Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations