Performance Tuning of Failure Detectors in Wireless Ad-hoc Networks: Modelling and Experiments

  • Corine Marchand
  • Jean-Marc Vincent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3670)

Abstract

We consider wireless ad-hoc networks and implement failure detections mechanisms. These failure detectors provide elementary information for high level distributed algorithms such as consensus, election or agreement. The aim is to guarantee a quality of service for these mechanisms. Stochastic models for tuning failure detectors are proposed based on frequency analysis and contention modelling. Tuning methods are suggested for setting time-out delays. The theoretical results were validated experimentally on a wireless platform, based on a statistical analysis of the measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baccelli, F., Brémaud, P.: Elements of Queuing Theory. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM 43(2), 225–267 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, W., Toueg, S., Aguilera, M.: On the Quality of Service of Failure Detectors. In: International Conference on Dependable Systems and Networks (DSN 2000. IEEE Computer Society Press, New York (2000)Google Scholar
  4. 4.
    Coccoli, A., Urbán, P., Bondavalli, A.,, S.: Performance Analysis of a Consensus Algorithm Combining Stochastic Activity Networks and Measurements. In: Proc. Int’l Conf. on Dependable Systems and Networks (DSN), Washington, DC, USA, June 2002, pp. 551–560 (2002)Google Scholar
  5. 5.
    Durand, Y., Perret, S., Vincent, J.-M., Marchand, C., Ottogalli, F.-G., Olive, V., Martin, S., Dumant, B., Chambon, S.: SIDRAH: A software infrastructure for a resilient community of wireless devices. In: smart Objects conference, pp. 134–137 (2003)Google Scholar
  6. 6.
    Fischer, M., Lynch, N., Paterson, M.: Impossibility of Distributed Consensus with One Faulty. Journal of the ACM 32(2), 374–382 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fortier, P., Michel, H.: Computer Systems Performance Evaluation and Prediction. Digital Press (2003)Google Scholar
  8. 8.
    Haverkort, B.: Performance of Computer Communication Systems. John Wiley & Sons, Chichester (1998)CrossRefGoogle Scholar
  9. 9.
    Hurfin, M., Raynal, M.: A Simple and Fast Asynchronous Consensus Protocol Based on a Weak Failure Detector. Distributed Computing 12(4), 209–223 (1999)CrossRefGoogle Scholar
  10. 10.
    Kleinrock, L.: Queuing systems: theory, vol. 1. J. Wiley & Sons, Chichester (1975)Google Scholar
  11. 11.
    Marchand, C.: Mise au point d’algorithmes répartis dans un environnement fortement variable, et expérimentation dans le contexte des pico-réseaux. PhD thesis, Institut National Polytechnique de Grenoble (2004)Google Scholar
  12. 12.
    Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, Heidelberg (1995)MATHGoogle Scholar
  13. 13.
    Sergent, N., Défago, X., Schiper, A.: Impact of a Failure Detection Mechanism on the Performance of Consensus. In: Proc. IEEE Pacific Rim Symp. on Dependable Computing (PRDC), Seoul, Korea (December 2001)Google Scholar
  14. 14.
    Wolff, R.: Stochastic Modeling and the Theory of Queues. Prentice-Hall International Editions, Englewood Cliffs (1989)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Corine Marchand
    • 1
  • Jean-Marc Vincent
    • 1
  1. 1.Laboratoire ID – IMAG, MESCAL project (CNRS – INRIA – INPG – UJF), ZIRSTMontbonnot Saint MartinFrance

Personalised recommendations