Hardware Platforms for MEMS Gyroscope Tuning Based on Evolutionary Computation Using Open-Loop and Closed-Loop Frequency Response

  • Didier Keymeulen
  • Michael I. Ferguson
  • Wolfgang Fink
  • Boris Oks
  • Chris Peay
  • Richard Terrile
  • Yen Cheng
  • Dennis Kim
  • Eric MacDonald
  • David Foor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3637)

Abstract

We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation We also report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leland, R.P.: Adaptive mode tuning vibrational gyroscopes. IEEE Trans. Control Systems Tech. 11(2), 242–247 (2003)CrossRefGoogle Scholar
  2. 2.
    Painer, C.C., Shkel, A.M.: Active structural error suppression in MEMS vibratory rate integrating gyroscopes. IEEE Sensors Journal 3(5), 595–606 (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., M’Closkey, R., Tran, T., Blaes, B.: A control and signal processing integrated circuit for the JPL-Boeing micromachined gyroscopes (submitted to IEEE)Google Scholar
  4. 4.
    Terrile, R.J., et al.: Evolutionary Computation Technologies for Space Systems. In: Proceedings of the IEEE Aerospace Conference, Big Sky (March 2005)Google Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  6. 6.
    Yuret, D., de la Maza, M.: Dynamic Hill Climbing – Overcoming limitations of optimization teqniques, MA 02139, AI Laboratory. MIT, CambridgeGoogle Scholar
  7. 7.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculation by Fast Computing Machines. J. of Chem. Phys. 21, 1087–1091 (1953)CrossRefGoogle Scholar
  8. 8.
    Kirkpatrick, S., Gelat, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hayworth, K.: Continuous Tuning and Calibration of Vibratory Gyroscopes. In: NASA Tech Brief (October 2003) (NPO-30449)Google Scholar
  10. 10.
    Ferguson, M.I., Keymeulen, D., Peay, C., Yee, K., Li, D.: Effect of Temperature on MEMS Vibratory Rate Gyroscope. In: Proceedings of the IEEE Aerospace Conference, Big Sky (March 2005)Google Scholar
  11. 11.
    Hayworth, K., Shcheglov, K., Humphreys, T., Challoner, A.: Electrostatic Spring Softening in Redundant Degree of Freedom resonators., patent US 6,823,734 B1, JPL and Boeing, November 30 (2004)Google Scholar
  12. 12.
    M’Closkey, R., Kim, D.: Real-time tuning of JPL-Boeing MEMS gyro., personal communication, JPL (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Didier Keymeulen
    • 1
  • Michael I. Ferguson
    • 1
  • Wolfgang Fink
    • 1
  • Boris Oks
    • 1
  • Chris Peay
    • 1
  • Richard Terrile
    • 1
  • Yen Cheng
    • 2
  • Dennis Kim
    • 2
  • Eric MacDonald
    • 3
  • David Foor
    • 4
  1. 1.Jet Propulsion Laboratory, MS 303-300PasadenaUSA
  2. 2.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos Angeles
  3. 3.University of Texas at El PasoEl Paso
  4. 4.Texas A & M University-KingsvilleKingsville

Personalised recommendations