Advertisement

Flexible Skeletal Programming with eSkel

  • Anne Benoit
  • Murray Cole
  • Stephen Gilmore
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3648)

Abstract

We present an overview of eSkel, a library for skeletal parallel programming. eSkel aims to maximise the conceptual flexibility afforded by its component skeletons and to facilitate dynamic selection of skeleton compositions. We present simple examples which illustrate these properties, and discuss the implementation challenges which the model poses.

Keywords

Call Tree Performance Evaluation Process Algebra Explicit Interaction Nest Deal Implicit Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press & Pitman (1989) ISBN 0-262-53086-4 Google Scholar
  2. 2.
    Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Programming. Parallel Computing 30, 389–406 (2004)CrossRefGoogle Scholar
  3. 3.
    Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis, London (1998)Google Scholar
  4. 4.
    Rabhi, F., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed Computing. Springer, Heidelberg (2003) ISBN 1-85233-506-8 zbMATHGoogle Scholar
  5. 5.
    Subhlok, J., O’Hallaron, D., Gross, T., Dinda, P., Webb, J.: Communication and memory requirements as the basis for mapping task and data parallel programs. In: Proceedings of Supercomputing 1994, Washington, DC, pp. 330–339 (1994)Google Scholar
  6. 6.
    Benoit, A., Cole, M.: Two Fundamental Concepts in Skeletal Parallel Programming. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 764–771. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Benoit, A., Cole, M.: (2005), http://homepages.inf.ed.ac.uk/mic/eSkel
  8. 8.
    Aulwes, R.T., Daniel, D.J., Desai, N.N., Graham, R.L., Taylor, L.D.R.M.A., Woodall, T.S., Sukalski, M.W.: Architecture of LA-MPI, A Network-Fault-Tolerant MPI. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, New Mexico, IEEE Computer Society, Los Alamitos (2004)Google Scholar
  9. 9.
    Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303-4900, USA: Sun HPC ClusterTools 3.1 User’s Guide (2000)Google Scholar
  10. 10.
    Benoit, A., Cole, M., Gilmore, S., Hillston, J. (2004), http://groups.inf.ed.ac.uk/enhance
  11. 11.
    Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anne Benoit
    • 1
  • Murray Cole
    • 1
  • Stephen Gilmore
    • 1
  • Jane Hillston
    • 1
  1. 1.School of InformaticsThe University of EdinburghEdinburghUK

Personalised recommendations