Advertisement

On the Use of Virtualization and Service Technologies to Enable Grid-Computing

  • Andréa Matsunaga
  • Maurício Tsugawa
  • Ming Zhao
  • Liping Zhu
  • Vivekananthan Sanjeepan
  • Sumalatha Adabala
  • Renato Figueiredo
  • Herman Lam
  • José A. B. Fortes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3648)

Abstract

The In-VIGO approach to Grid-computing relies on the dynamic establishment of virtual grids on which application services are instantiated. In-VIGO was conceived to enable computational science to take place In Virtual Information Grid Organizations. Having its first version deployed on July of 2003, In-VIGO middleware is currently used by scientists from various disciplines, a noteworthy example being the computational nanoelectronics research community (http://www.nanohub.org). All components of an In-VIGO-generated virtual grid – machines, networks, applications and data – are themselves virtual and services are provided for their dynamic creation. This article reviews the In-VIGO approach to Grid-computing and overviews the associated middleware techniques and architectures for virtualizing Grid components, using services for creation of virtual grids and automatically Grid-enabling unmodified applications. The In-VIGO approach to the implementation of virtual networks and virtual application services are discussed as examples of Grid-motivated approaches to resource virtualization and Web-service creation.

Keywords

Virtual Machine File System Virtual Network Grid Resource Execution Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adabala, S., Chadha, V., Chawla, P., Figueiredo, R.J., Fortes, J.A.B., Krsul, I., Matsunaga, A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From Virtualized Resources to Virtual Computing Grids: The In-VIGO System. Future Generation Computing Systems, special issue on Complex Problem-Solving Environments for Grid Computing 21(6), 896–909 (2005)Google Scholar
  2. 2.
    Fortes, J.A.B., Figueiredo, R.J., Lundstrom, M.S.: Virtual Computing Infrastructures for Nanoelectronics Simulation. In: IEEE Proceedings: Special Issue on Blue Sky Technologies (2005) (in press)Google Scholar
  3. 3.
    Kapadia, N., Figueiredo, R.J., Fortes, J.A.B.: Enhancing the Scalability and Usability of Computational Grids via Logical User Accounts and Virtual File Systems. In: Proceedings of Heterogeneous Computing Workshop at the International Parallel and Distributed Processing Symposium (April 2001)Google Scholar
  4. 4.
    Krsul, I., Ganguly, A., Zhang, J., Fortes, J., Figueiredo, R.: VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing. In: Proceedings of Supercomputing (2004)Google Scholar
  5. 5.
    Keahey, K., Doering, K., Foster, I.: From Sandbox to Playground: Dynamic Virtual Environments in the Grid. In: Proceedings of Fifth IEEE/ACM International Workshop on Grid Computing, GRID 2004 (2004)Google Scholar
  6. 6.
    Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on Virtual Machines. In: Proceedings of International Conference on Distributed Computing Systems (May 2003)Google Scholar
  7. 7.
    Zhao, M., Figueiredo, R.J.: Distributed File System Support for Virtual Machines in Grid Computing. In: Proceedings of 13th IEEE International Symposium on High Performance Distributed Computing (June 2004)Google Scholar
  8. 8.
    Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: The PUNCH Virtual File System: Seamless Access to Decentralized Storage Services in a Computational Grid. In: Proceedings of IEEE International Symposium on High Performance Distributed Computing (August 2001)Google Scholar
  9. 9.
    Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS Version 3 Design and Implementation. In: Proceedings of USENIX Summer Technical Conference (1994)Google Scholar
  10. 10.
    Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: Seamless Access to Decentralized Storage Services in Computational Grids via a Virtual File System. Cluster Computing (2004)Google Scholar
  11. 11.
    Zhao, M., Chadha, V., Figueiredo, R.J.: Supporting Application-Tailored Grid File System Sessions with WSRF-Based Services. In: Proceedings of the 14th IEEE International Symposium on High Performance Distributed Computing, July 2005, pp. 202–211 (2005)Google Scholar
  12. 12.
    Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: SOCKS protocol version 5. RFC1928 (March 1996)Google Scholar
  13. 13.
    Son, S., Livny, M.: Recovering Internet Symmetry in Distributed Computing. In: Proceedings of the 3rd International Symposium on Cluster Computing and the Grid (May 2003)Google Scholar
  14. 14.
    Francis, P., Gummadi, R.: IPNL: A NAT-Extended Internet Architecture. In: Proceedings of the ACM SIGCOMM (August 2001)Google Scholar
  15. 15.
    Eugene Ng, T.S., Stroica, I., Zhang, H.: A Waypoint Service Approach to Connect Heterogeneous Internet Address Spaces. In: Proceedings of USENIX, pp. 319–332 (2001)Google Scholar
  16. 16.
    Denis, A., Aumage, O., Hofman, R., Verstoep, K., Kielmann, T., Bal, H.: Wide-Area Communication for Grids: An Integrated Solution to Connectivity, Performance and Security Problems. In: Proceedings of 13th IEEE International Symposium on High Performance Distributed Computing (June 2004)Google Scholar
  17. 17.
    Sundararaj, A., Dinda, P.: Towards Virtual Networks for Virtual Machine Grid Computing. In: Proceedings of the 3rd USENIX Virtual Machine Research and Technology Symposium (May 2004)Google Scholar
  18. 18.
    Jiang, X., Xu, D.: VIOLIN: Virtual Internetworking on Overlay Infrastructure. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 937–946. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Touch, J., Hotz, S.: The X-Bone. In: Proc. of Global Internet Mini-Conference at Globecom (November 1998)Google Scholar
  20. 20.
    Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van Nieuwpoort, R., Reinefeld, A., Schintke, F., Schott, T., Seidel, E., Ullmer, B.: The grid application toolkit: toward generic and easy application programming interfaces for the grid. Proceedings of the IEEE 93(3), 534–550 (2005)CrossRefGoogle Scholar
  21. 21.
    Pierce, M., Fox, G., Youn, C., Mock, S., Mueller, K., Balsoy, O.: Interoperable Web services for computational portals. In: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, Baltimore, MD, pp. 1–12. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  22. 22.
    Thomas, M., Boisseau, J.: Building Grid Computing Portals: The NPACI Grid Portal Toolkit. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global Infrastructure a Reality, vol. ch. 28, John Wiley and Sons, Ltd, Chichester (2003)Google Scholar
  23. 23.
    Senger, M., Rice, P., Oinn, T.: Soaplab - a unified Sesame door to analysis tools. In: Proceedings of UK e-Science All Hands Meeting, September 2003, pp. 509–513 (2003)Google Scholar
  24. 24.
    Gannon, D., Alameda, J., Chipara, O., Christie, M., Dukle, V., Fang, L., Farrellee, M., Kandaswamy, G., Kodeboyina, D., Krishnan, S., Moad, C., Pierce, M., Plale, B., Rossi, A., Simmhan, Y., Sarangi, A., Slominski, A., Shirasuna, S., Thomas, T.: Building grid portal applications from a web service component architecture. Proceedings of the IEEE 93(3), 551–563 (2005)CrossRefGoogle Scholar
  25. 25.
    Sanjeepan, V., Matsunaga, A., Zhu, L., Lam, H., Fortes, J.A.B.: A Service-Oriented, Scalable Approach to Grid-Enabling of Legacy Scientific Applications. In: Proceeding of International Conference on Web Services (ICWS), Industry Track (July 2005)Google Scholar
  26. 26.
    Solomon, M., Raman, R., Livny, M.: Matchmaking distributed resource management for high throughput computing. In: Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, Chicago, IL (July 1998)Google Scholar
  27. 27.
    Tangmunarunkit, H., Decker, S., Kesselman, C.: Ontology-Based Resource Matching in the Grid - The Grid Meets the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 706–721. Springer, Heidelberg (2003) ISBN 3-540-20362-1 CrossRefGoogle Scholar
  28. 28.
    Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specification. In: W3C Recommendation, World Wide Web Consortium (February 1999), http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andréa Matsunaga
    • 1
  • Maurício Tsugawa
    • 1
  • Ming Zhao
    • 1
  • Liping Zhu
    • 1
  • Vivekananthan Sanjeepan
    • 1
  • Sumalatha Adabala
    • 1
  • Renato Figueiredo
    • 1
  • Herman Lam
    • 1
  • José A. B. Fortes
    • 1
  1. 1.Advanced Computing and Information Systems Laboratory (ACIS), Dep. of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations