Abstract

This paper deals with balanced leaf language complexity classes, introduced independently in [1] and [14]. We propose the seed concept for leaf languages, which allows us to give “short” representations for leaf words. We then use seeds to show that leaf languages A with NP ⊆ BLeaf P (A) cannot be polylog-sparse (i.e. census A O(log O(1))), unless PH collapses.

We also generalize balanced ≤\(^{P,{bit}}_{m}\)-reductions, which were introduced in [6], to other bit-reductions, for example (balanced) truth-table- and Turing-bit-reductions. Then, similarly to above, we prove that NP and Σ\(^{P}_{\rm 2}\) cannot have polylog-sparse hard sets under those balanced truth-table- and Turing-bit-reductions, if the polynomial-time hierarchy is infinite.

Keywords

Computational Complexity Leaf Languages Seeds Sparseness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bovet, D.P., Crescenzi, P., Silvestri, R.: A Uniform Approach to Define Complexity Classes. Theoretical Computer Science 104, 263–283 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cai, J.-Y.: \(S^P_2 \subseteq ZPP^{NP}\). In: FOCS 2001, pp. 620–629 (2001)Google Scholar
  3. 3.
    Canetti, R.: More on BPP and the polynomial-time hierarchy. Information Processing Letters 57, 237–241 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, J.-Y., Ogihara, M.: Sparse Sets versus Complexity Classes. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 53–80 (1997)Google Scholar
  5. 5.
    Homer, S., Longpré, L.: On reductions of NP sets to sparse sets. Journal of Computer and System Sciences 48(2), 324–336 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.: On the Power of Polynomial Time Bit-Reductions. In: Proc. 8th Structure in Complexity Theory Conference, pp. 200–207 (1993)Google Scholar
  7. 7.
    Hertrampf, U., Vollmer, H., Wagner, K.: On Balanced vs. Unbalanced Computation Trees. Mathematical Systems Theory 29, 411–421 (1996)MATHMathSciNetGoogle Scholar
  8. 8.
    Jenner, B., McKenzie, P., Therien, D.: Logspace and Logtime Leaf Languages. Information and Computation 141, 21–33 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kadin, J.: P NP[logn] and sparse Turing-complete sets for NP. Journal of Computer and System Sciences 39, 282–298 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mahaney, S.: Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences 25(2), 130–143 (1982)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ogiwara, M., Watanabe, O.: On polynomial time bounded truth-table reducibility of NP sets to sparse sets. SIAM JC 20, 471–483 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  13. 13.
    Russell, A., Sundaram, R.: Symmetric alternation captures BPP. Computational Complexity 7(2), 152–162 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Vereshchagin, N.: Relativizable and Nonrelativizable Theorems in the Polynomial Theory of Algorithms. Russian Acad. Sci. Izv. Math. 42, 261–298 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Falk Unger
    • 1
  1. 1.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations