A BDD-Representation for the Logic of Equality and Uninterpreted Functions

  • Jaco van de Pol
  • Olga Tveretina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

The logic of equality and uninterpreted functions (EUF) has been proposed for processor verification. This paper presents a new data structure called Binary Decision Diagrams for representing EUF formulas (EUF-BDDs). We define EUF-BDDs similar to BDDs, but we allow equalities between terms as labels instead of Boolean variables. We provide an approach to build a reduced ordered EUF-BDD (EUF-ROBDD) and prove that every path to a leaf is satisfiable by construction. Moreover, EUF-ROBDDs are logically equivalent representations of EUF-formulae, so they can also be used to represent state spaces in symbolic model checking with data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.: Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24, 293–318 (1992)CrossRefGoogle Scholar
  2. 2.
    Burch, J., Dill, D.: Automated verification of pipelined microprocesoor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: The small model property: how small can it be? Information and Computation 178, 279–293 (2002)MATHMathSciNetGoogle Scholar
  4. 4.
    Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure. Journal of the ACM 27(2), 356–364 (1980)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Shostak, R.: An algorithm for reasoning about equality. Communications of the ACM 21, 583–585 (1978)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ackermann, W.: Solvable cases of the decision problem. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1954)MATHGoogle Scholar
  7. 7.
    Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD based procedures for a theory of equality with uninterpreted functions. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 244–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Fontaine, P., Gribomont, E.P.: Using BDDs with combinations of theories. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 190–201. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Bryant, R., Velev, M.: Boolean satisfiability with transitivity constraints. ACM Transactions on Computational Logic 3, 604–627 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tveretina, O., Zantema, H.: A proof system and a decision procedure for equality logic. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 530–539. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Groote, J., van de Pol, J.: Equational binary decision diagrams. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 161–178. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Badban, B., van de Pol, J.: Zero, sucessor and equality in BDDs. Annals of Pure and Applied Logic 133/1-3, 101–123 (2005)CrossRefGoogle Scholar
  13. 13.
    Badban, B., van de Pol, J.: An algorithm to verify formulas by means of (0,s,=)-BDDs. In: Proceedings of the 9th Annual Computer Society of Iran Computer Conference (CSICC 2004), Tehran, Iran (2004)Google Scholar
  14. 14.
    Blom, S., Groote, J., van Langevelde, I., Lisser, B., van de Pol, J.: New developments around the μCRL tool set. In: Proceedings of FMICS 2003. ENTCS, vol. 80 (2003)Google Scholar
  15. 15.
    Groote, J., Willemse, T.: Parameterised boolean equation systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 308–324. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  17. 17.
    van de Pol, J., Tveretina, O.: A BDD-representation for the logic of equality and uninterpreted functions (a full version with proofs). Technical Report SEN-R0509, Centrum voor Wiskunde en Informatica, Amsterdam (2005)Google Scholar
  18. 18.
    Tveretina, O.: A decision procedure for equality logic with uninterpreted functions. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 66–79. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Blom, S., van de Pol, J.: State space reduction by proving confluence. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    van de Pol, J.: A prover for the μCRL toolset with applications – Version 0.1. Technical Report SEN-R0106, CWI, Amsterdam (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jaco van de Pol
    • 1
    • 2
  • Olga Tveretina
    • 2
  1. 1.Dept. of Software EngineeringCentrum voor Wiskunde en InformaticaAmsterdamThe Netherlands
  2. 2.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations