Inverse Monoids: Decidability and Complexity of Algebraic Questions

  • Markus Lohrey
  • Nicole Ondrusch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

The word problem for inverse monoids generated by a set Γ subject to relations of the form e = f, where e and f are both idempotents in the free inverse monoid generated by Γ, is investigated. It is shown that for every fixed monoid of this form the word problem can be solved in polynomial time which solves an open problem of Margolis and Meakin. For the uniform word problem, where the presentation is part of the input, EXPTIME-completeness is shown. For the Cayley-graphs of these monoids, it is shown that the first-order theory with regular path predicates is decidable. Regular path predicates allow to state that there is a path from a node x to a node y that is labeled with a word from some regular language. As a corollary, the decidability of the generalized word problem is deduced. Finally, it is shown that the Cayley-graph of the free inverse monoid has an undecidable monadic second-order theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birget, J.-C., Margolis, S.W., Meakin, J.: The word problem for inverse monoids presented by one idempotent relator. Theoretical Computer Science 123(2), 273–289 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the Association for Computing Machinery 28(1), 114–133 (1981)MATHMathSciNetGoogle Scholar
  3. 3.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of graph grammars and computing by graph transformation, Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  4. 4.
    Kelarev, A.V., Quinn, S.J.: A combinatorial property and Cayley graphs of semigroups. Semigroup Forum 66(1), 89–96 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the group case. Annals of Pure and Applied Logic 131(1–3), 263–286 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the monoid case. International Journal of Algebra and Computation (2005) (to appear)Google Scholar
  8. 8.
    Lohrey, M., Ondrusch, N.: Inverse monoids: decidability and complexity of algebraic questions. Technical Report 2005/2, University of Stuttgart, Germany (2005), Available via, ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/TR-2005-02/
  9. 9.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (1977)MATHGoogle Scholar
  10. 10.
    Margolis, S., Meakin, J.: Inverse monoids, trees, and context-free languages. Trans. Amer. Math. Soc. 335(1), 259–276 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Margolis, S., Meakin, J., Sapir, M.: Algorithmic problems in groups, semigroups and inverse semigroups. In: Semigroups, Formal Languages and Groups, pp. 147–214. Kluwer, Dordrecht (1995)Google Scholar
  12. 12.
    Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages. Journal of Computer and System Sciences 26, 295–310 (1983)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37(1), 51–75 (1985)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Munn, W.: Free inverse semigroups. Proc. London Math. Soc. 30, 385–404 (1974)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Petrich, M.: Inverse semigroups. Wiley, Chichester (1984)MATHGoogle Scholar
  16. 16.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society 141, 1–35 (1969)MATHMathSciNetGoogle Scholar
  17. 17.
    Rozenblat, B.V.: Diophantine theories of free inverse semigroups. Siberian Mathematical Journal 26, 860–865 (1985) (English translation)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Silva, P.V., Steinberg, B.: A geometric characterization of automatic monoids. Quarterly J. Mathematics 55, 333–356 (2004)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and Computation 164(2), 234–263 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zelinka, B.: Graphs of semigroups. Casopis. Pest. Mat. 27, 407–408 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Nicole Ondrusch
    • 1
  1. 1.FMIUniversität StuttgartGermany

Personalised recommendations