Advertisement

Removing Bidirectionality from Nondeterministic Finite Automata

  • Christos Kapoutsis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

We prove that every two-way nondeterministic finite automaton with n states has an equivalent one-way nondeterministic finite automaton with at most (\(^{2n}_{n+1}\)) states. We also show this bound is exact.

Keywords

Regular Language Descriptional Complexity Deterministic Finite Automaton Pushdown Automaton Promise Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rabin, M.O., Scott, D.: Remarks on finite automata. In: Proceedings of the Summer Institute of Symbolic Logic, Cornell, pp. 106–112 (1957)Google Scholar
  2. 2.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ott, G.: On multipath automata I. Research report 69, SRRC (1964)Google Scholar
  4. 4.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of the Symposium on Switching and Automata Theory, pp. 188–191 (1971)Google Scholar
  5. 5.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers 20, 1211–1214 (1971)zbMATHCrossRefGoogle Scholar
  6. 6.
    Seiferas, J.I.: Manuscript communicated. In: Sipser, M. (ed.), October 1973 (1973)Google Scholar
  7. 7.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of the Symposium on the Theory of Computing, pp. 275–286 (1978)Google Scholar
  8. 8.
    Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM Journal of Computing 27, 1073–1082 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Rabin, M.O.: Two-way finite automata. In: Proceedings of the Summer Institute of Symbolic Logic, Cornell, pp. 366–369 (1957)Google Scholar
  10. 10.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM Journal of Research and Development 3, 198–200 (1959)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  12. 12.
    Birget, J.C.: State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26, 237–269 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Damanik, D.: Finite automata with restricted two-way motion. Master’s thesis, J. W. Goethe-Universität Frankfurt (1996) (in German)Google Scholar
  14. 14.
    Birget, J.C.: Two-way automata and length-preserving homomorphisms. Report 109, Department of Computer Science, University of Nebraska (1990)Google Scholar
  15. 15.
    Barnes, B.H.: A two-way automaton with fewer states than any equivalent one-way automaton. IEEE Transactions on Computers C-20, 474–475 (1971)zbMATHCrossRefGoogle Scholar
  16. 16.
    Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21, 195–202 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kapoutsis, C.: Deterministic moles cannot solve liveness (In preparation)Google Scholar
  18. 18.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. Journal of Universal Computer Science 8, 193–234 (2002)MathSciNetGoogle Scholar
  19. 19.
    Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata. Information Processing Letters 30, 261–264 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christos Kapoutsis
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of Technology 

Personalised recommendations