Nondeterministic Graph Searching: From Pathwidth to Treewidth

  • Fedor V. Fomin
  • Pierre Fraigniaud
  • Nicolas Nisse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

We introduce nondeterministic graph searching with a controlled amount of nondeterminism and show how this new tool can be used in algorithm design and combinatorial analysis applying to both pathwidth and treewidth. We prove equivalence between this game- theoretic approach and graph decompositions called q-branched tree decompositions, which can be interpreted as a parameterized version of tree decompositions. Path decomposition and (standard) tree decomposition are two extreme cases of q-branched tree decompositions. The equivalence between nondeterministic graph searching and q-branched tree decomposition enables us to design an exact (exponential time) algorithm computing q-branched treewidth for all q ≥ 0, which is thus valid for both treewidth and pathwidth. This algorithm performs as fast as the best known exact algorithm for pathwidth. Conversely, this equivalence also enables us to design a lower bound on the amount of nondeterminism required to search a graph with the minimum number of searchers.

Keywords

treewidth pathwidth graph searching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference (UAI-2001), pp. 7–15. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  2. 2.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science 5, 33–49 (1991)MathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. Discrete Applied Mathematics 136(2-3), 183–196 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comp. Sc. 172, 233–254 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for minimum-weight vertex separators. In: 37th ACM Symposium on Theory of Computing, STOC 2005 (2005)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  10. 10.
    Fomin, F.V., Kratsch, D., Todinca, I.: Exact algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Goldsmith, J., Levy, M., Munhenk, M.: Limited Nondeterminism. SIGACT News, Introduction to Complexity Theory Column 13 (June 1996)Google Scholar
  12. 12.
    Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comp. Sc. 47, 205–218 (1986)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J. Alg. Disc. Meth. 6, 418–444 (1985)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Makedon, F.S., Sudborough, I.H.: On minimizing width in linear layouts. Disc. Appl. Math. 23, 243–265 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Combin. Theory Ser. B 58, 22–33 (1993)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Computing 6, 537–546 (1977)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Pierre Fraigniaud
    • 2
  • Nicolas Nisse
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.CNRS, Lab. de Recherche en InformatiqueUniversité Paris-SudOrsayFrance

Personalised recommendations