Adversarial Queueing Model for Continuous Network Dynamics

  • María J. Blesa
  • Daniel Calzada
  • Antonio Fernández
  • Luis López
  • Andrés L. Martínez
  • Agustín Santos
  • Maria Serna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3618)

Abstract

In this paper we start the study of generalizing the Adversarial Queueing Theory aqt model towards a continuous scenario in which the usually assumed synchronicity of the evolution is not required anymore. We consider a model, named continuous AQT (caqt), in which packets can have arbitrary lengths, and the network links may have different speeds (or bandwidths) and propagation delays. We show that, in such a general model, having bounded queues implies bounded end-to-end packet delays and vice versa. From the network point of view, we show that networks with directed acyclic topologies are universally stable, i.e., stable independently of the protocols and the traffic patterns used in it, and that this even holds for traffic patterns that make links to be fully loaded. Concerning packet scheduling protocols, we show that the well-known lis, sis,ftg and nfs protocols remain universally stable in our model. We also show that the caqt model is strictly stronger than the aqt model by presenting scheduling policies that are unstable under the former while they are universally stable under the latter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blesa, M., Calzada, D., Fernández, A., López, L., Martínez, A., Santos, A., Serna, M.: Adversarial queueing model for continuous network dynamics. Research Report LSI-05-10-R, Dept. Llenguatges i Sistemes Informàtics, UPC (2005)Google Scholar
  2. 2.
    Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial queueing theory. Journal of the ACM 48, 13–38 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.: Universal stability results for greedy contention–resolution protocols. Journal of the ACM 48, 39–69 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Awerbuch, B., Berenbrink, P., Brinkmann, A., Scheideler, C.: Simple routing strategies for adversarial systems. In: 42th. IEEE Symposium on Foundations of Computer Science, pp. 158–167. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Anshelevich, E., Kempe, D., Kleinberg, J.: Stability of load balancing algorithms in dynamic adversarial systems. In: 34th. Annual ACM Symposium on Theory of Computing, pp. 399–406. ACM Press, New York (2002)Google Scholar
  6. 6.
    Àlvarez, C., Blesa, M., Díaz, J., Fernández, A., Serna, M.: Adversarial models for priority-based networks. Networks 45, 23–35 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Àlvarez, C., Blesa, M., Serna, M.: The impact of failure management on the stability of communication networks. In: 10th International Conference on Parallel and Distributed Systems, pp. 153–160. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  8. 8.
    Borodin, A., Ostrovsky, R., Rabani, Y.: Stability preserving transformations: Packet routing networks with edge capacities and speeds. Journal of Interconnection Networks 5, 1–12 (2004)CrossRefGoogle Scholar
  9. 9.
    Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Instability of networks with quasi-static link capacities. In: 10th Internaltional Colloquium on Structural Information Complexity. Proceedings in Informatics, vol. 17, pp. 179–194. Carleton Scientific, Ottawa (2003)Google Scholar
  10. 10.
    Koukopoulos, D., Mavronicolas, M., Spirakis, P.: Performance and stability bounds for dynamic networks. In: 7th International Conference on Parallel Architectures, Algorithms and Networks, pp. 239–246. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Echagüe, J., Cholvi, V., Fernández, A.: Universal stability results for low rate adversaries in packet switched networks. IEEE Communication Letters 7, 578–580 (2003)CrossRefGoogle Scholar
  12. 12.
    Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates in the adversarial queueing model. SIAM Journal on Computing 34, 318–332 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cruz, R.: A calculus for network delay. Part I (network elements in isolation) and II (network analysis). IEEE Transactions on Information Theory 37, 114–141 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Weinard, M.: The necessity of timekeeping in adversarial queueing. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 440–451. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Rosén, A., Tsirkin, M.: On delivery times in packet networks under adversarial traffic. In: 16th ACM Symposium on Parallel Algorithms and Architectures, pp. 1–10. ACM Press, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • María J. Blesa
    • 1
  • Daniel Calzada
    • 2
  • Antonio Fernández
    • 3
  • Luis López
    • 3
  • Andrés L. Martínez
    • 3
  • Agustín Santos
    • 3
  • Maria Serna
    • 1
  1. 1.ALBCOM, LSIUniversitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.ATC, EUIUniversidad Politécnica de MadridMadridSpain
  3. 3.LADyR, GSyC, ESCETUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations