\({\mathcal R}o{\mathcal S}y\): A Rough Knowledge Base System

  • Robin Andersson
  • Aida Vitória
  • Jan Małuszyński
  • Jan Komorowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3642)


This paper presents a user-oriented view of \({\mathcal R}o{\mathcal S}y\), a \({\mathcal R}{\rm ough}\) Knowledge Base \({\mathcal S}\)ystem. The system tackles two problems not fully answered by previous research: the ability to define rough sets in terms of other rough sets and incorporation of domain or expert knowledge. We describe two main components of \({\mathcal R}o{\mathcal S}y\): knowledge base creation and query answering. The former allows the user to create a knowledge base of rough concepts and checks that the definitions do not cause what we will call a model failure. The latter gives the user a possibility to query rough concepts defined in the knowledge base. The features of \({\mathcal R}o{\mathcal S}y\) are described using examples. The system is currently available on a web site for online interactions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Doherty, P., Łukaszewicz, W., Szałas, A.: CAKE: A computer-aided knowledge engineering technique. In: Proceedings of the 15th European Conference on Artificial Intelligence ECAI 2002, pp. 220–224 (2002)Google Scholar
  3. 3.
    Vitória, A.: A framework for reasoning with rough sets. Licentiate thesis, Linköping University, Dept. of Science and Technology, LiU-TEK-LIC-2004:73, Thesis No. 1144 (2005)Google Scholar
  4. 4.
    Andersson, R.: Implementation of a rough knowledge base system supporting quantitative measures. Master’s thesis, Linköping University (2004)Google Scholar
  5. 5.
    Vitória, A., Damásio, C.V., Małuszyński, J.: Toward rough knowledge bases with quantitative measures. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 153–158. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S., Skowron, A. (eds.) Rough-Fuzzy Hybridization: A New Method for Decision Making, pp. 3–98. Springer, Singapore (1998)Google Scholar
  7. 7.
    Komorowski, J., Øhrn, A.: Modelling prognostic power of cardiac tests using rough sets. Artificial Intelligence in Medicine 15 (1999)Google Scholar
  8. 8.
    Geleijnse, M., Elhendy, A., van Domburg, R.: Prognostic value of dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain. J. Am. Coll. Cardiol. 28, 447–454 (1996)CrossRefGoogle Scholar
  9. 9.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and Systems Science 46, 39–59 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Journal of Computational Intelligence 17, 472–492 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Robin Andersson
    • 1
  • Aida Vitória
    • 2
  • Jan Małuszyński
    • 3
  • Jan Komorowski
    • 1
  1. 1.The Linnaeus Centre for BioinformaticsUppsala UniversityUppsalaSweden
  2. 2.Dept. of Science and TechnologyLinköping UniversityNorrköpingSweden
  3. 3.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations