A Group Decision-Making Model of Risk Evasion in Software Project Bidding Based on VPRS

  • Gang Xie
  • Jinlong Zhang
  • K. K. Lai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3642)

Abstract

This study develops a group decision-making model based on Variable Precision Rough Set, which can be used to adjust classification error in decision tables consisting of risk-evading level (REL) of software project bidding. In order to reflect experts’ ability, impartiality and carefulness roundly during the course of group decision-making, a weight is endowed with each expert. Integrated risk-evading level (IREL) of projects and risk indices are computed. Then, risk-evading measures, the rank of risk-evading strength and risk-evading methodology are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerardine, D., Brent, G.R.: A foundation for the study of group decision support systems. Management Science 33(5), 589–609 (1987)CrossRefGoogle Scholar
  2. 2.
    Bidgoli, H.: Group decision support system. Journal of System Management 14(1), 56–62 (1996)Google Scholar
  3. 3.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beynon, M.: The Elucidation of an Iterative Procedure to ęÂ-Reduct Selection in the Variable Precision Rough Sets Model. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 412–417. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Ramanathan, R., Ganesh, L.S.: Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members’ weightages. European Journal of Operational Research 79, 249–265 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)MATHGoogle Scholar
  7. 7.
    Hayden, T.L., Tarazaga, P.: Distance matrices and regular figures. Linear Algebra Appl. 195, 9–16 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Trosset, M.W.: Distance Matrix Completion by Numerical Optimization. Computational Optimization and Applications 17, 11–22 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wu, Q.L.: Risk analysis before tender. Chinese Cost Management of Railway Engineering 1, 21–24 (2000)Google Scholar
  10. 10.
    Patterson, F.D., Neailey, K.: A risk register database system to aid the management of project risk. International Journal of Project Management 20, 365–374 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gang Xie
    • 1
  • Jinlong Zhang
    • 1
  • K. K. Lai
    • 2
  1. 1.School of ManagementHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Management SciencesCity University of Hong Kong, Hong Kong and College of Business Administration, Hunan UniversityChina

Personalised recommendations