Rough Set Approach to Sunspot Classification Problem

  • Sinh Hoa Nguyen
  • Trung Thanh Nguyen
  • Hung Son Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3642)


This paper presents an application of hierarchical learning method based rough set theory to the problem of sunspot classification from satellite images. The Modified Zurich classification scheme [3] is defined by a set of rules containing many complicated and unprecise concepts, which cannot be determined directly from solar images. The idea is to represent the domain knowledge by an ontology of concepts – a treelike structure that describes the relationship between the target concepts, intermediate concepts and attributes. We show that such ontology can be constructed by a decision tree algorithm and demonstrate the proposed method on the data set containing sunspot extracted from satellite images of solar disk.


Hierarchical learning rough sets sunspot classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J., Szczuka, M.: RSES and RSESlib - A Collection of Tools for Rough Set Computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 106. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  3. 3.
    McIntosh, P.: Solar Physics 125, 251 (1990)Google Scholar
  4. 4.
    Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, H.S.: On learning of sunspot classification. In: Klopotek, M.A., Wierzchon, S.T., Trojanowski, K. (eds.) Intelligent Information Systems, Proceedings of IIPWM 2004, Zakopane, Poland, May 17-20. Advances in Soft Computing, pp. 59–68. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymala-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Nguyen, S.H., Nguyen, H.S.: Rough set approach to approximation of concepts from taxonomy. In: Proceedings of Knowledge Discovery and Ontologies Workshop (KDO 2004) at ECML/PKDD 2004, Pisa, Italy, September 24 (2004)Google Scholar
  7. 7.
    Nguyen, S.H., Nguyen, H.S.: Learning concept approximation from uncertain decision tables. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 249–260. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Phillips, K.J.H.: Guide to the Sun. Cambridge University Press, Cambridge (1992)Google Scholar
  9. 9.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  10. 10.
    Scherrer, P.H., et al.: Sol. Phys., 162, 129 (1995)Google Scholar
  11. 11.
    Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Witten, I.H., Frank, E.: Data Mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  13. 13.
  14. 14.
    The WEKA Homepage,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sinh Hoa Nguyen
    • 1
  • Trung Thanh Nguyen
    • 2
  • Hung Son Nguyen
    • 3
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Computer ScienceUniversity of BathBathUnited Kingdom
  3. 3.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations