Behavioral Extensions of Institutions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)


We show that any institution \({\mathcal I}\) satisfying some reasonable conditions can be transformed into another institution, \({\mathcal I}_{beh}\), which captures formally and abstractly the intuitions of adding support for behavioral equivalence and reasoning to an existing, particular algebraic framework. We call our transformation an “extension” because \({\mathcal I}_{beh}\) has the same sentences as \({\mathcal I}\) and because its entailment relation includes that of \({\mathcal I}\). Many properties of behavioral equivalence in concrete hidden logics follow as special cases of corresponding institutional results. As expected, the presented constructions and results can be instantiated to other logics satisfying our requirements as well, thus leading to novel behavioral logics, such as partial or infinitary ones, that have the desired properties.


Basic Sentence Reduct Functor Signature Morphism Quotient System Model Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. John Wiley & Sons, Chichester (1990)zbMATHGoogle Scholar
  2. 2.
    Benabou, J.: Fibred categories and the foundations of naive category theory. Journal of Symbolic Logic 50, 10–37 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bidoit, M., Hennicker, R.: On the integration of observability and reachability concepts. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 21–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R., Kurz, A.: Observational logic, constructor-based logic, and their duality. Theoretical Computer Science 3(298), 471–510 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bidoit, M., Tarlecki, A.: Behavioural satisfaction and equivalence in concrete model categories. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 241–256. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Burstall, R., Diaconescu, R.: Hiding and behaviour: an institutional approach. In: A Classical Mind: Essays in Honour of C.A.R. Hoare, pp. 75–92. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  7. 7.
    Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  8. 8.
    Căzănescu, V.E., Roşu, G.: Weak inclusion systems. Mathematical Structures in Computer Science 7(2), 195–206 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Diaconescu, R.: Grothendieck institutions. Applied Categorical Structures 10(4), 383–402 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Diaconescu, R.: Institution-independent ultraproducts. Fundamenta Informaticae 55(3-4), 321–348 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Diaconescu, R.: Elementary diagrams in institutions. Logic and Computation 14(5), 651–674 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Diaconescu, R.: An institution-independent proof of Craig interpolation theorem. Studia Logica 77, 59–79 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Diaconescu, R.: Institution-independent Model Theory. Book draft (Ask author for current draft at (to appear)Google Scholar
  14. 14.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report. AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  15. 15.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularization. In: Logical Environments, Cambridge, pp. 83–130 (1993)Google Scholar
  16. 16.
    Goguen, J.: Types as theories. In: Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991)Google Scholar
  17. 17.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. In: Proceedings of WADT. LNCS, vol. 785. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Goguen, J., Malcolm, G.: A hidden agenda. J. of TCS 245(1), 55–101 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goguen, J., Roşu, G.: Hiding more of hidden algebra. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1704–1719. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Hofmann, M., Sanella, D.: On behavioral abstraction and behavioral satisfaction in higher-order logic. Theoretical Computer Science 167, 3–45 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lane, S.M.: Categories for the Working Mathematician. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  24. 24.
    Popescu, A., Roşu, G.: Behavioral extensions of institutions. Technical Report UIUCDCS-R-2005-2582 and UILU-ENG-2005-1778, Department of Computer Science, University of Illinois at Champaign-Urbana (May 2005)Google Scholar
  25. 25.
    Reichel, H.: Behavioural equivalence – a unifying concept for initial and final specifications. In: Proceedings of the 3rd Hungarian Computer Science Conference. Akademiai Kiado (1981)Google Scholar
  26. 26.
    Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)Google Scholar
  27. 27.
    Roşu, G., Goguen, J.: Hidden congruent deduction. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761. Springer, Heidelberg (2000)Google Scholar
  28. 28.
    Sannella, D., Tarlecki, A.: On observational equivalence and algebraic specification. Journal of Computer and System Science 34, 150–178 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tarlecki, A.: Bits and pieces of the theory of institutions. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 334–360. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-Champaign 

Personalised recommendations