Finding Basic Block and Variable Correspondence

  • Iman Narasamdya
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3672)

Abstract

Having in mind the ultimate goal of translation validation for optimizing compilers, we propose a new algorithm for solving the problem of finding basic block and variable correspondence between two (low-level) programs generated by a compiler from the same source using different optimizations. The essence of our technique is interpretation of the two programs on random inputs and comparing the histories of value changes for variables. We describe an architecture of a system for finding basic block and variable correspondence and provide experimental evidence of its usefulness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In: Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages (POPL 1988), pp. 1–11 (1988)Google Scholar
  2. 2.
    Fang, Y.: Personal communication over emails (2005)Google Scholar
  3. 3.
    Gulwani, S., Necula, G.C.: Global value numbering using random interpretation. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL), pp. 342–352. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Jaramillo, C., Gupta, R., Soffa, M.L.: Capturing the effects of code improving transformations. In: IEEE PACT, pp. 118–123 (1998)Google Scholar
  5. 5.
    Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  6. 6.
    Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings of the ACM SIGPLAN Conference on Principles of Programming Languages Design and Implementation (PLDI), June 2000, pp. 83–95 (2000)Google Scholar
  7. 7.
    Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 151. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Pnueli, A., Zuck, L., Fang, Y., Goldberg, B., Hu, Y.: Translation and run-time validation of optimized code. ENTCS 70(4), 1–22 (2002)Google Scholar
  9. 9.
    Rival, X.: Symbolic transfer function-based approaches to certified compilation. In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 1–13. ACM Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    van Engelen, R., Whalley, D.B., Yuan, X.: Automatic validation of code-improving transformations. In: Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems, pp. 206–210. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation validation of optimizing compilers. j-jucs 9(3), 223–247 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Iman Narasamdya
    • 1
  • Andrei Voronkov
    • 1
  1. 1.University of Manchester 

Personalised recommendations