Locality-Based Abstractions

  • Javier Esparza
  • Pierre Ganty
  • Stefan Schwoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3672)


We present locality-based abstractions, in which a set of states of a distributed system is abstracted to the collection of views that some observers have of the states. Special cases of locality-abstractions have been used in different contexts (planning, analysis of concurrent programs, concurrency theory). In this paper we give a general definition in the context of abstract interpretation, show that arbitrary locality-based abstractions are hard to compute in general, and provide two solutions to this problem. The solutions are evaluated in several case studies.


Polynomial Time Model Check Partial State Abstract Interpretation Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. POPL, pp. 238–252. ACM Press, New York (1977)Google Scholar
  2. 2.
    Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking C programs. In: Proc. TACAS, pp. 268–283 (2001)Google Scholar
  3. 3.
    Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting all pairs of statements that may happen in parallel. In: Proc. FSE. Software Engineering Notes, vol. 23(6), pp. 24–34. ACM Press, New York (1998)Google Scholar
  4. 4.
    Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing mhp information for concurrent Java programs. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp. 338–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Naumovich, G., Avrunin, G.S., Clarke, L.A.: Data flow analysis for checking properties of concurrent Java programs. In: Proc. ICSE, pp. 399–410. ACM Press, New York (1999)Google Scholar
  6. 6.
    Kovalyov, A.: Concurrency relations and the safety problem for petri nets. In: ICATPN 1992. LNCS, vol. 616, pp. 299–309 (1992)Google Scholar
  7. 7.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelligence 90, 279–298 (1997)CrossRefGoogle Scholar
  8. 8.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. In: Proc. IJCAI, pp. 1636–1642 (1995)Google Scholar
  9. 9.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35, 677–691 (1986)zbMATHCrossRefGoogle Scholar
  10. 10.
    Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function manipulation. In: IEEE/ACM ICCAD, pp. 92–95 (1990)Google Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50, 752–794 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ranzato, F., Tapparo, F.: Making abstract model checking strongly preserving. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 411–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. ACM 47, 361–416 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV version 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Zuck, L.D., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free choice. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 208–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Heiner, M., Deussen, P.: Petri net based qualitative analysis - a case study. Technical Report I-08/1995, Brandenburg Tech. Univ., Cottbus (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Javier Esparza
    • 1
  • Pierre Ganty
    • 2
  • Stefan Schwoon
    • 1
  1. 1.Institut für Formale Methoden der InformatikUniversität Stuttgart 
  2. 2.Département d’InformatiqueUniversité Libre de Bruxelles 

Personalised recommendations