Rotation and Gray-Scale Invariant Classification of Textures Improved by Spatial Distribution of Features

  • Gouchol Pok
  • Keun Ho Ryu
  • Jyh-charn Lyu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3588)

Abstract

In this paper, we present a framework for texture descriptors based on spatial distribution of textural features. Our approach is based on the observation that regional properties of textures are well captured by correlations among local texture patterns. The proposed method has been evaluated through experiments using real textures, and has shown significant improvements in recognition rates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pun, C.-M., Lee, M.-C.: Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification. IEEE Trans. Pattern Analysis and Machine Intelligence 25(5), 590–603 (2003)CrossRefGoogle Scholar
  2. 2.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  3. 3.
    Porter, R., Canagarajah, N.: Robust Rotation-Invariant Texture Classification: Wavelet, Gabor Filter, and GMRF Based Schemes. IEE Proc.-Vision Image Signal Processing 144(3), 180–188 (1997)CrossRefGoogle Scholar
  4. 4.
    Hayley, G.M., Manjunath, B.M.: Rotation Invariant Texture Classification Using Modified Gabor Filters. In: Proc. Int’l Conf. Image Processing 1995, vol. 3, pp. 262–265 (1995)Google Scholar
  5. 5.
    Dimai, A.: Rotation Invariant Texture Description using General Moment Invariants and Gabor Filters. In: Proc. 11th Scandinavian Conf. Image Analysis 1999, June 1999, pp. 391–398 (1999)Google Scholar
  6. 6.
    Fountain, S.R., Tan, T.N., Baker, K.D.: A Comparative Study of Rotation Invariant Classification and Retrieval of Texture Images. In: Proc. Ninth British Machine Vision Conf., September 1998, pp. 266–275 (1998)Google Scholar
  7. 7.
    Brodatz, P.: Textures:A Photographic Album for Artists and Designers, Dover (1966)Google Scholar
  8. 8.
    Kashiyap, R.L., Khotanzad, A.: A Moel-Based Methods for Rotation Invariant Texture Classification. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 472–481 (1986)CrossRefGoogle Scholar
  9. 9.
    Mao, J., Jain, A.K.: Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models. Pattern Recognition 25, 173–188 (1992)CrossRefGoogle Scholar
  10. 10.
    Pietikainen, M., Ojala, T., Xu, Z.: Rotation-Invariant Texture Classification Using Feature Distributions. Pattern Recognition 33, 43–52 (2000)CrossRefGoogle Scholar
  11. 11.
    Pietikainen, M., Ojala, T., Xu, Z.: Efficient Rotation Invariant Texture Features for Content-Based Imae Retrieval. Pattern Recognition 31, 1725–1732 (1998)CrossRefGoogle Scholar
  12. 12.
    Greenspan, H., Belongie, S., Goodman, R., Perona, P.: Rotation Invariant Texture Recognition Using a Steerable Pyramid. In: Proc. 12th Int’l Conf. Pattern Recognition, vol. 2, pp. 162–167 (1994)Google Scholar
  13. 13.
    Cohen, F.S., Fan, Z., Patel, M.A.: Classification of Rotated and Scaled Texture Images Using Gaussian Markov Random Field Models. IEEE Trans. Pattern Analysis and Machine Intelligence 13(2), 192–202 (1991)CrossRefGoogle Scholar
  14. 14.
    Leung, M., Peterson, A.M.: Scale and Rotation Invariant Texture Classification. In: Proc. 26th Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 1, pp. 461–465 (1992)Google Scholar
  15. 15.
    Wu, Y., Yoshida, Y.: An Efficient Method for Rotation and Scaling Invariant Texture Classification. In: Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 4, pp. 2519–2522 (1995)Google Scholar
  16. 16.
    Tan, T.N.: Scale and Rotation Invariant Texture Classification. In: IEE Colloquium Texture Classification: Theory and Applications (1994)Google Scholar
  17. 17.
    Manian, V., Vasquez, R.: Scaled and Rotated Texture Classification Using a Class of Basis Functions. Pattern Recognition 31, 1937–1948 (1998)CrossRefGoogle Scholar
  18. 18.
    Chen, J.-L., Kundu, A.: Rotation and Gray Scale Transform Invariant Texture Identification Using Wavelet Decomposition and Hidden Markov Model. IEEE Trans. Pattern Analysis and Machine Intelligence 16, 208–214 (1994)CrossRefGoogle Scholar
  19. 19.
    Wu, W.R., Wei, S.C.: Rotation and Gray-Scale Transform Invariant Texture Classification Using Spiral Resampling, Subband Decomposition, and Hidden Markov Model. IEEE Trans. Image Processing 5, 1423–1434 (1996)CrossRefGoogle Scholar
  20. 20.
    Chetverykov, D.: Texture Analysis Using Feature Based Pairwise Interaction Maps. Pattern Recognition 32(3), 487–502 (1999)CrossRefGoogle Scholar
  21. 21.
    Collection of Microtextures, Computer Vision Group, University of Bonn, http://www-dbv.cs.uni-bonn.de/image/browse
  22. 22.
    Ojala, T., Maenpaa, T., Pietikainen, M.: Outex-A New Framework for Empirical Evaluation of Texture Analisis Algorithms. In: Proc. 16th Int’l Conf. Pattern Recognition (2002)Google Scholar
  23. 23.
    Haralick, R.M.: Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67, 786–804 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gouchol Pok
    • 1
  • Keun Ho Ryu
    • 2
  • Jyh-charn Lyu
    • 3
  1. 1.Department of Computer ScienceYanbian University of Science and TechnologyYanjiChina
  2. 2.Department of Computer ScienceChungbuk National UniversityCheongjuKorea
  3. 3.Department of Computer ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations