Gene Expression Biclustering Using Random Walk Strategies

  • Fabrizio Angiulli
  • Clara Pizzuti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3589)


A biclustering algorithm, based on a greedy technique and enriched with a local search strategy to escape poor local minima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a gain function, combining the mean squared residue, the row variance, and the size of the bicluster. Different strategies to escape local minima are introduced and compared. Experimental results on yeast and lymphoma microarray data sets show that the method is able to find significant biclusters.


Random Move Gain Function Yeast Cell Cycle Local Search Strategy Gene Expression Data Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3-4), 281–297 (1999)CrossRefGoogle Scholar
  2. 2.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103 (2000)Google Scholar
  3. 3.
    Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of the the Fourth SIAM International Conference on Data Mining (SDM 2004) (2004)Google Scholar
  4. 4.
    Eisen, M.B., Spellman, P., Brown, P.O., Botstein, P.: Cluster analysis and display of genome-wide expression pattern. In: Proceedings of the National Academy of Sciences, USA 8, pp. 14863–14868 (1998)Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  6. 6.
    Getz, G., Levine, E., Domany, E.: Coupled two-way cluster analysis of gene microarray data. In: Proceedings of the National Academy of Sciences, USA, pp. 12079–12084 (2000)Google Scholar
  7. 7.
    Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)CrossRefGoogle Scholar
  8. 8.
    Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford University (2000)Google Scholar
  9. 9.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  10. 10.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th Nation Conference on Artificial Intelligence (AAAI 1994), pp. 337–343 (1994)Google Scholar
  11. 11.
    Tavazoie, S., Hughes, J.D., Campbell, M., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Natural genetics 22, 281–285 (1999)CrossRefGoogle Scholar
  12. 12.
    Yang, J., Wang, W., Wang, H., Yu, P.: Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering (BIBE 2003), pp. 321–327 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fabrizio Angiulli
    • 1
  • Clara Pizzuti
    • 1
  1. 1.ICAR-CNRUniversità della CalabriaRendeItaly

Personalised recommendations