Prince: An Algorithm for Generating Rule Bases Without Closure Computations

  • T. Hamrouni
  • S. Ben Yahia
  • Y. Slimani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3589)


The problem of the relevance and the usefulness of extracted association rules is becoming of primary importance, since an overwhelming number of association rules may be derived, even from reasonably sized databases. To overcome such drawback, the extraction of reduced size generic bases of association rules seems to be promising. Using the concept of minimal generator, we propose an algorithm, called Prince, allowing a shrewd extraction of generic bases of rules. To this end, Prince builds the partial order. Its originality is that this partial order is maintained between minimal generators and no more between closed itemsets. A structure called minimal generator lattice is then built, from which the derivation of the generic association rules becomes straightforward. An intensive experimental evaluation, carried out on benchmarking sparse and dense datasets, showed that Prince largely outperforms the pioneer level-wise algorithms, i.e., Close, A-Close and Titanic.


Data mining Formal Concept Analysis generic rule bases minimal generator lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goethals, B., Zaki, M.J.: FIMI 2003: Workshop on frequent itemset mining implementations. In: FIMI Repository (2003),
  2. 2.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Journal of Information Systems 24, 25–46 (1999)CrossRefGoogle Scholar
  3. 3.
    Wille, R.: Restructuring lattices theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Dordrecht-Boston (1982)Google Scholar
  4. 4.
    BenYahia, S., Nguifo, E.M.: Approches d’extraction de règles d’association basées sur la correspondance de Galois. In: Boulicault, J.F., Cremilleux, B. (eds.) Revue d’Ingénierie des Systèmes d’Information (ISI), Hermès-Lavoisier, vol. 3-4, pp. 23–55 (2004)Google Scholar
  5. 5.
    Pasquier, N., Bastide, Y., Touil, R., Lakhal, L.: Discovering frequent closed itemsets. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Pei, J., Han, J., Mao, R., Nishio, S., Tang, S., Yang, D.: Closet: An efficient algorithm for mining frequent closed itemsets. In: Proceedings of the ACM-SIGMOD DMKD 2000, Dallas, Texas, USA, pp. 21–30 (2000) Google Scholar
  7. 7.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. Journal on Knowledge and Data Engineering (KDE) 2, 189–222 (2002)CrossRefGoogle Scholar
  8. 8.
    Zaki, M.J., Hsiao, C.J.: Charm: An efficient algorithm for closed itemset mining. In: Proceedings of the 2nd SIAM International Conference on Data Mining, Arlington, Virginia, USA, pp. 34–43 (2002)Google Scholar
  9. 9.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. 10.
    Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    BenYahia, S., Cherif, C.L., Mineau, G., Jaoua, A.: Découverte des règles associatives non redondantes: application aux corpus textuels. In: Revue d’Intelligence Artificielle, special issue of Intl. Conference of Journées francophones d’Extraction et Gestion des Connaissances (EGC 2003), Lyon, France, vol. 17, pp. 131–143 (2003)Google Scholar
  12. 12.
    Kryszkiewicz, M.: Concise representations of association rules. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 92–109. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-free generators. In: Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM), San Jose, California, USA, pp. 305–312 (2001)Google Scholar
  14. 14.
    Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  15. 15.
    Hamrouni, T., BenYahia, S., Slimani, Y.: Prince: Extraction optimisée des bases génériques de règles sans calcul de fermetures. In: Proceedings of the International Conference INFORSID, Inforsid Editions, Grenoble, France, pp. 353–368 (2005)Google Scholar
  16. 16.
    Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 35–42 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • T. Hamrouni
    • 1
  • S. Ben Yahia
    • 1
  • Y. Slimani
    • 1
  1. 1.Département des Sciences de l’InformatiqueTunisTunisie

Personalised recommendations