A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking

  • Stefan Janson
  • Daniel Merkle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3636)


In this paper we introduce the new hybrid Particle Swarm Optimization algorithm for multi-objective optimization ClustMPSO. We combined the PSO algorithm with clustering techniques to divide all particles into several subswarms. Strategies for updating the personal best position of a particle, for selection of the neighbourhood best and for swarm dominance are proposed. The algorithm is analyzed on both artificial optimization functions and on an important real world problem from biochemistry. The molecule docking problem is to predict the three dimensional structure and the affinity of a binding of a target receptor and a ligand. ClustMPSO clearly outperforms a well-known Lamarckian Genetic Algorithm for the problem.


Multiobjective Optimization Particle Swarm Optimization Algorithm Objective Space Docking Energy Lamarckian Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977)CrossRefGoogle Scholar
  2. 2.
    Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Genetics 47(4), 409–443 (2002)CrossRefGoogle Scholar
  3. 3.
    Hu, X., Eberhart, R.: Multiobjective optimization using dynamic neigh- borhood particle swarm optimization. In: Fogel, D.B., et al. (eds.) Proc. of the CEC 2002, pp. 1677–1681. IEEE Press, Los Alamitos (2002)Google Scholar
  4. 4.
    Kennedy, J.: Small worlds and mega-minds: Eects of neighborhood topology on particle swarm performance. In: Angeline, P.J., et al. (eds.) Proc. of the Congress on Evolutionary Computation, vol. 3, pp. 1931–1938. IEEE Press, Los Alamitos (1999)Google Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks (ICNN 1995), vol. 4, pp. 1942–1947. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  6. 6.
    Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14), 1639–1662 (1998)CrossRefGoogle Scholar
  8. 8.
    Mostaghim, S., Teich, J.: Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. In: Proc. of the Congress on Evolutionary Computation (CEC 2004), pp. 1404–1411 (2004)Google Scholar
  9. 9.
    Solis, R., Wets, T.: Minimization by random search techniques. Mathematics of Operations Research 6, 19–30 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Streichert, F., Ulmer, H., Zell, A.: Parallelization of multi-objective evolutionary algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Teodoro, M., Phillips Jr, G.N., Kavraki, L.E.: Molecular docking: A problem with thousands of degrees of freedom. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pp. 960–966. IEEE press, Los Alamitos (2001)Google Scholar
  12. 12.
    Toscano Pulido, G., Coello Coello, C.A.: Using Clustering Techniques to Improve the Performance of a Particle Swarm Optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Janson
    • 1
  • Daniel Merkle
    • 1
  1. 1.Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations