Guarded Open Answer Set Programming

  • Stijn Heymans
  • Davy Van Nieuwenborgh
  • Dirk Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3662)


Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program’s constants. We define a fixed point logic (FPL) extension of Clark’s completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (μ(L)GF).

Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling a characterization of an answer set semantics by μLGF formulas. Finally, we relate guarded OASP to Datalog LITE, thus linking an answer set semantics to a semantics based on fixed point models of extended stratified Datalog programs. From this correspondence, we deduce 2-EXPTIME-completeness of satisfiability checking w.r.t. (loosely) guarded programs.


Logic Program Horn Clause Open Answer Point Formula Open Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Andréka, H., Németi, I., Van Benthem, J.: Modal Languages and Bounded Fragments of Predicate Logic. J. of Philosophical Logic 27(3), 217–274 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Van Benthem, J.: Dynamic Bits and Pieces. ILLC research report. University of Amsterdam (1997)Google Scholar
  5. 5.
    Chandra, A.K., Harel, D.: Horn Clauses and the Fixpoint Query Hierarchy. In: Proc. of PODS 1982, pp. 158–163. ACM Press, New York (1982)Google Scholar
  6. 6.
    Clark, K.L.: Negation as Failure. In: Readings in Nonmonotonic Reasoning, pp. 311–325. Kaufmann, San Francisco (1987)Google Scholar
  7. 7.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  8. 8.
    Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Sciene of Computer Programming 2(3), 241–266 (1982)zbMATHCrossRefGoogle Scholar
  9. 9.
    Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 177–191. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  11. 11.
    Gelfond, M., Przymusinska, H.: Reasoning in Open Domains. In: Logic Programming and Non-Monotonic Reasoning, pp. 397–413. MIT Press, Cambridge (1993)Google Scholar
  12. 12.
    Gottlob, G., Grädel, E., Veith, H.: Datalog LITE: A deductive query language with linear time model checking. ACM Transactions on Computational Logic 3(1), 1–35 (2002)CrossRefGoogle Scholar
  13. 13.
    Grädel, E.: On the Restraining Power of Guards. Journal of Symbolic Logic 64(4), 1719–1742 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grädel, E., Walukiewicz, I.: Guarded Fixed Point Logic. In: Proc. of LICS 1999, pp. 45–54. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  15. 15.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Guarded Open Answer Set Programming. Technical report,
  16. 16.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Semantic Web Reasoning with Conceptual Logic Programs. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 113–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Nonmonotonic Ontological and Rule-Based Reasoning with Extended Conceptual Logic Programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kozen, D.: Results on the Propositional μ-calculus. Theor. Comput. Sci. 27, 333–354 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In: Proc. of 18th National Conference on Artificial Intelligence, pp. 112–117. AAAI, Menlo Park (2002)Google Scholar
  22. 22.
    Syrjänen, T.: Omega-restricted Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279. Springer, Heidelberg (2001)Google Scholar
  23. 23.
    Syrjänen, T., Niemelä, I.: The smodels System. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stijn Heymans
    • 1
  • Davy Van Nieuwenborgh
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUBBrusselsBelgium

Personalised recommendations