Addressing New Challenges by Building Security Protocols Around Graphs

  • Kamil Kulesza
  • Zbigniew Kotulski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3364)


We propose the use of graphs as basic objects in security protocols. While having all the functionality of their number based counterparts; such protocols can have extended capabilities, especially useful in the field of verification and analysis. The scalability and transitivity for graph related properties allow for addressing protocols of increasing complexity. These features also cater for new challenges in the future, for instance ones resulting from a quantum computing paradigm.


security protocols data security graph theory secret sharing graph colouring extended capabilities quantum computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 (1948)MATHMathSciNetGoogle Scholar
  2. 2.
    Goedel, K.: Uber formal unentscheidbare Satze der Principia Mathematica und verwander Systeme, I. Monatshefte fur Mathematik und Physik 38, 173–198 (1931)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Korte, B., Vygen, J.: Combinatorial Optimization, theory and algorithms. Springer, Heidelberg (2000)MATHGoogle Scholar
  4. 4.
    Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer, Heilderberg (2002)MATHGoogle Scholar
  5. 5.
    Beineke, L.W., Wilson, R.J. (eds.): Graph connections; relationships between graph theory and other areas of mathematics. Oxford University Press, New York (1997)MATHGoogle Scholar
  6. 6.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(1), 691–729 (1991)MATHMathSciNetGoogle Scholar
  7. 7.
    Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Science 37(2), 156–189 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldwasser, S.: The search for provably secure cryptosystems. In: Proceedings of Symposia in Applied Mathematics, Cryptology and Computational Number Theory, vol. 42, pp. 89–113. American Mathematical Society (1990)Google Scholar
  9. 9.
    Maurer, U.M.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Stinson, D.R.: Cryptography, Theory and Practice. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  11. 11.
    Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Heilderberg (2003)MATHGoogle Scholar
  12. 12.
    Stinson, D.R., Wei, R.: Bibliography on Secret Sharing Schemes. Webpage, (retrieved 30.08.2003)
  13. 13.
    Kulesza, K., Kotulski, Z., Pieprzyk, J.: On alternative approach for verifiable secret sharing. In: Zurich (ed.) ESORICS, Available from IACR’s Cryptology ePrint Archive (2002), (submitted for publication) report 2003/035
  14. 14.
    Kulesza, K., Kotulski, Z.: On graph coloring check-digit method. Submitted for publication, Available from the Los Alamos National Laborartory e-print (2002),
  15. 15.
    Wilson, R.A.: Graphs, Colourings and the Four-colour Theorem. Oxford University Press, New York (2002)MATHGoogle Scholar
  16. 16.
    Ryan, P.: Open questions. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2000. LNCS, vol. 2133, pp. 49–53. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Gruska, J.: Quantum Computing. McGraw Hill, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kamil Kulesza
    • 1
  • Zbigniew Kotulski
    • 1
  1. 1.Computer Science Department, Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations