Advertisement

A Structured Set of Higher-Order Problems

  • Christoph E. Benzmüller
  • Chad E. Brown
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3603)

Abstract

We present a set of problems that may support the development of calculi and theorem provers for classical higher-order logic. We propose to employ these test problems as quick and easy criteria preceding the formal soundness and completeness analysis of proof systems under development. Our set of problems is structured according to different technical issues and along different notions of semantics (including Henkin semantics) for higher-order logic. Many examples are either theorems or non-theorems depending on the choice of semantics. The examples can thus indicate the deductive strength of a proof system.

Keywords

Test Problem Theorem Prover Proof System Logical Constant Functional Extensionality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: General models and extensionality. J. of Symbolic Logic 37(2), 395–397 (1972)zbMATHCrossRefGoogle Scholar
  2. 2.
    Andrews, P.B.: On Connections and Higher Order Logic. J. of Automated Reasoning 5, 257–291 (1989)zbMATHCrossRefGoogle Scholar
  3. 3.
    Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 15, vol. 2, pp. 965–1007. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  5. 5.
    Andrews, P.B., Bishop, M., Brown, C.E.: TPS: A theorem proving system for type theory. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 164–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Andrews, P.B.: Resolution in type theory. J. of Symbolic Logic 36(3), 414–432 (1971)zbMATHCrossRefGoogle Scholar
  7. 7.
    Benzmüller, C.: Equality and Extensionality in Automated Higher-Order Theorem Proving. PhD thesis, Saarland University (1999)Google Scholar
  8. 8.
    Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. of Symbolic Logic 69(4), 1027–1088 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Benzmüller, C., Brown, C.E., Kohlhase, M.: Semantic techniques for higher-order cut-elimination. SEKI Technical Report SR-2004-07, Saarland University, Saarbrücken, Germany (2004), Available at: http://www.ags.uni-sb.de/~chris/papers/R37.pdf
  10. 10.
    Benzmüller, C., Kohlhase, M.: LEO – a higher order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Can a higher-order and a first-order theorem prover cooperate? In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 415–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Bonacina, M.P., Hsiang, J.: Incompleteness of the RUE/NRF inference systems. Newsletter of the Association for Automated Reasoning 20, 9–12 (1992)Google Scholar
  13. 13.
    Boolos, G.: Logic, Logic, Logic. Harvard University Press, Cambridge (1998)Google Scholar
  14. 14.
    Brown, C.E.: Set Comprehension in Church’s Type Theory. PhD thesis, Department of Mathematical Sciences, Carnegie Mellon University (2004)Google Scholar
  15. 15.
    Church, A.: A formulation of the simple theory of types. J. of Symbolic Logic 5, 56–68 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Digricoli, V.J.: Resolution by unification and equality. In: Joyner, W.H. (ed.) Proc. of CADE-4, Austin, Texas, USA (1979)Google Scholar
  17. 17.
    Henkin, L.: Completeness in the theory of types. J. of Symbolic Logic 15(2), 81–91 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Huet, G.P.: A unification algorithm for typed λ-calculus. Theoretical Computer Science 1, 27–57 (1975)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kohlhase, M.: A Mechanization of Sorted Higher-Order Logic Based on the Resolution Principle. PhD thesis, Saarland University (1994)Google Scholar
  20. 20.
    Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294–309. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    McCharen, J.D., Overbeek, R.A., Wos, L.A.: Problems and Experiments for and with Automated Theorem-Proving Programs. IEEE Transactions on Computers C-25(8), 773–782 (1976)CrossRefGoogle Scholar
  22. 22.
    Miller, D.: Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univ. (1983)Google Scholar
  23. 23.
    Pelletier, F.J.: Seventy-five Problems for Testing Automatic Theorem Provers. J. of Automated Reasoning 2(2), 191–216 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pelletier, F.J., Sutcliffe, G., Suttner, C.B.: The Development of CASC. AI Communications 15(2-3), 79–90 (2002)zbMATHGoogle Scholar
  25. 25.
    Prehofer, C.: Solving Higher-Order Equations: From Logic to Programming. Progress in Theoretical Computer Science. Birkhäuser, Basel (1998)Google Scholar
  26. 26.
    Snyder, W., Gallier, J.: Higher-Order Unification Revisited: Complete Sets of Transformations. J. of Symbolic Computation 8, 101–140 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Statman, R.: The typed λ-calculus is not elementary recursive. Theoretical Computer Science 9, 73–81 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sutcliffe, G., Suttner, C.: The TPTP Problem Library. CNF Release v1.2.1. J. of Automated Reasoning 21(2), 177–203 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wilson, G.A., Minker, J.: Resolution, Refinements, and Search Strategies: A Comparative Study. IEEE Transactions on Computers C-25(8), 782–801 (1976)CrossRefGoogle Scholar
  30. 30.
    Wirth, C.-P.: Descente infinie + Deduction. Logic J. of the IGPL 12(1), 1–96 (2004), www.ags.uni-sb.de/~cp/p/d/welcome.html zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph E. Benzmüller
    • 1
  • Chad E. Brown
    • 1
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations