Parallel Genetic Algorithms on Programmable Graphics Hardware

  • Qizhi Yu
  • Chongcheng Chen
  • Zhigeng Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3612)


Parallel genetic algorithms are usually implemented on parallel machines or distributed systems. This paper describes how fine-grained parallel genetic algorithms can be mapped to programmable graphics hardware found in commodity PC. Our approach stores chromosomes and their fitness values in texture memory on graphics card. Both fitness evaluation and genetic operations are implemented entirely with fragment programs executed on graphics processing unit in parallel. We demonstrate the effectiveness of our approach by comparing it with compatible software implementation. The presented approach allows us benefit from the advantages of parallel genetic algorithms on low-cost platform.


Genetic Algorithm Genetic Operator Graphic Hardware Graphic Processor Parallel Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar
  2. 2.
    Tomassini, M.: A survey of parallel genetic algorithms, vol. III, pp. 87–118. World Scientific, Singapore (1995)Google Scholar
  3. 3.
    Konfrst, Z.: Parallel genetic algorithms: advances, computing rends, applications and perspectives. In: Parallel and Distributed Processing Symposium, p. 162 (2004)Google Scholar
  4. 4.
    Spiessens, P., Manderick, B.: A massively parallel genetic algorithms: Implementation and first analysis. In: Int. Conf. Genetic Algorithms, San Diego, pp. 279–285. Morgan Kaufmann, San Francisco (1991)Google Scholar
  5. 5.
    Fernando, R.: GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics. Addison-Wesley, Reading (2004)Google Scholar
  6. 6.
    Fermando, R., Kilgard, M.J.: The Cg Tutorial. Addision Wesley, Reading (2003)Google Scholar
  7. 7.
    Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for general-purpose computing: a framework and analysiy. In: Internaltional Symposium on Microarchitecture, Istanbul, Turkey, pp. 306–317. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  8. 8.
    Krger, J., Westermann, R.: Linear algebra operators for gpu implementation of numerical algorithms. ACM Transactions on Graphics 22, 908–916 (2003)CrossRefGoogle Scholar
  9. 9.
    Harris, M.J.: Real-Time Cloud Simulation and Rendering. Dissertaion, University of North Carolina at Chapel Hill (2003)Google Scholar
  10. 10.
    Bolz, J., Farmer, I., Grinspun, E., Schroder, P., Schrder, P.: Sparse matrix solvers on the gpu: Conjugate gradients and multigrid. ACM Transactions on Graphics 22, 917–924 (2003)CrossRefGoogle Scholar
  11. 11.
    Hillesland, K.E., Molinov, S., Grzeszczuk, R.: Nonlinear optimization framework for image-based modeling on programmable graphics hardware. ACM Transactions on Graphics 22, 925–934 (2003)CrossRefGoogle Scholar
  12. 12.
    Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M., Manocha, D.: Fast computation of database operations using graphics processors. In: International Conference on Management of Data, pp. 215–226 (2004)Google Scholar
  13. 13.
    Goldberg, D.: Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley, New York (1989)zbMATHGoogle Scholar
  14. 14.
    Raghuwanshi, M., Kakde, O.: Survey on multiobjective evolutionary and real coded genetic algorithms. In: The 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Cairns, Australia (2004)Google Scholar
  15. 15.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  16. 16.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)Google Scholar
  17. 17.
    Lukac, R., Plataniotis, K.N., Smolka, B., Venetsanopoulos, A.N.: Color image filtering and enhancement based on genetic algorithms. In: The 2004 IEEE International Symposium on Circuits and Systems (2004)Google Scholar
  18. 18.
    Houston, M., Fatahalian, K., Sugerman, J., Buck, I., Hanrahan, P.: Parallel computation on a cluster of gpus. In: Lastra, A., Lin, M., Manocha, D. (eds.) ACM Workshop on General-Purpose Computing on Graphics Processors, Los Angeles, California, p. 50 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Qizhi Yu
    • 1
  • Chongcheng Chen
    • 2
  • Zhigeng Pan
    • 1
    • 2
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouP.R. China
  2. 2.Spatial Information Research Center of Fujian ProvinceFuzhou UniversityFuzhouP.R. China

Personalised recommendations