Fuzzy Ultra Filters and Fuzzy G-Filters of MTL-Algebras

  • Xiao-hong Zhang
  • Yong-quan Wang
  • Yong-lin Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3613)


The concepts of fuzzy ultra filters and fuzzy G-filters of MTL-algebras are introduced. Some examples are given and the following main results are proved: (1) a fuzzy filter of MTL-algebra is fuzzy ultra filter if and only if it is both a fuzzy prime filter and fuzzy Boolean filter; (2) a fuzzy filter of MTL-algebra is fuzzy Boolean filter if and only if it is both a fuzzy G-filter and fuzzy MV-filter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)MATHGoogle Scholar
  2. 2.
    Ying, M.S.: Perturbation of fuzzy reasoning. IEEE Trans. Fuzzy Sys. 7, 625–629 (1999)CrossRefGoogle Scholar
  3. 3.
    Ying, M.S.: Implications operators in fuzzy logic. IEEE Trans. Fuzzy Sys. 10, 88–91 (2002)CrossRefGoogle Scholar
  4. 4.
    Wang, G.J.: A formal deductive system for fuzzy propositional calculus. Chinese Science Bulletin 42, 1521–1526 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Wang, G.J.: On the logic foundation of fuzzy reasoning. Information Sciences 117, 47–88 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wang, G.J.: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing (2000) (in Chinese)Google Scholar
  7. 7.
    Esteva, F., Godo, L.: Monoidal t-norm-based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 12(4), 271–288 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70, 183–192 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kim, K.H., Zhang, Q., Jun, Y.B.: On Fuzzy filters of MTL-algebras. The Journal of Fuzzy Mathematics 10(4), 981–989 (2002)MATHMathSciNetGoogle Scholar
  10. 10.
    Jun, Y.B., Xu, Y., Zhang, X.H.: Fuzzy filters of MTL-algebras. Information Sciences (in print)Google Scholar
  11. 11.
    Turunen, E.: Boolean deductive systems of BL-algebras. Arch. Math. Logic 40, 467–473 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Su, R.S., Wang, G.J.: On fuzzy MP filters of R0-algebras. Fuzzy Systems and Mathematics 18(2), 15–23 (2004)MathSciNetGoogle Scholar
  13. 13.
    Zhang, X.H.: On filters in MTL-algebras (submitted)Google Scholar
  14. 14.
    Zhang, X.H., Li, W.H.: On fuzzy logic algebraic systems MTL (submitted)Google Scholar
  15. 15.
    Zhang, X.H.: Fuzzy BZ-ideals and fuzzy anti-grouped ideals. The Journal of Fuzzy Mathematics 11(4), 915–932 (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xiao-hong Zhang
    • 1
  • Yong-quan Wang
    • 2
  • Yong-lin Liu
    • 3
  1. 1.Faculty of ScienceNingbo UniversityNingboP.R.China
  2. 2.Information Technology CenterEast China University of Politics and LawShanghaiP.R.China
  3. 3.Department of MathematicsNanping Teachers CollegeNanpingP.R.China

Personalised recommendations