Relaxed LMIs Observer-Based Controller Design via Improved T-S Fuzzy Model Structure

  • Wei Xie
  • Huaiyu Wu
  • Xin Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3613)

Abstract

Relaxed linear matrix inequalities (LMIs) conditions for fuzzy observer-based controller design are proposed based on a kind of improved T-S fuzzy model structure. The improved structure included the original T-S fuzzy model and enough large bandwidth pre- and post-filters. By this structure fuzzy observer-based controller design can be transformed into LMIs optimization problem. Compared with earlier results, it includes the less number of LMIs that equals the number of fuzzy rules plus one positive definition constraint of Lyapunov function. Therefore, it provides us with less conservative results for fuzzy observer-based controller design. Finally, a numerical example is demonstrated to show the efficiency of proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. SIAM, Philadelphia (1994)Google Scholar
  2. 2.
    Castro, J.: Fuzzy logic controllers are universal approximator. IEEE Trans. on Systems, Man, Cybernetics 25, 629–635 (1995)CrossRefGoogle Scholar
  3. 3.
    Chadli, M., Maquin, D., Ragot, J.: Relaxed stability conditions for Takagi-Sugeno fuzzy systems. In: IEEE International Conference on Systems, Man, and Cybernetics, Nashville, Tennessee, USA, October 8-11, pp. 3514–3519 (2000)Google Scholar
  4. 4.
    Chai, J.-S., Tan, S., Chan, Q., Hang, C.-C.: A general fuzzy control scheme for nonlinear processes with stability analysis. Fuzzy Sets and Systems 100, 179–195 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI toolbox. Mathworks, Natick (1995)Google Scholar
  6. 6.
    Jadbabaie, A.: A reduction in conservatism in stability and L2 Gain analysis of T-S fuzzy systems via Linear matrix inequalities. In: IFAC 1999. triennial World congress, vol. 14, pp. 285–289. P.R. China (1999)Google Scholar
  7. 7.
    Johansson, M., Rantzer, A., Arz6n, K.: Piecewise quadratic stability for affine Sugeno systems. In: FUZZ. IEEE 1998, Anchorage, Alaska (1998)Google Scholar
  8. 8.
    Jadbabaie, A.: A reduction in conservatism in stability and L2 Gain analysis of T-S fuzzy systems via Linear matrix inequalities. In: IFAC 1999. triennial World congress, vol. 14, pp. 285–289. P.R. China, Beijing (1999)Google Scholar
  9. 9.
    Liu, X.D., Zhang, Q.L.: New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39, 1571–1582 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Narendra, K.S., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. on Automatic Control 39(12), 2469–2471 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. on Systems, Man, Cybernetics 15(l), 116–132 (1985)MATHGoogle Scholar
  12. 12.
    Takagi, T., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based design. IEEE Trans. on Fuzzy Systems 6(2), 250–256 (1998)CrossRefGoogle Scholar
  13. 13.
    Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of uncertain non-linear systems via fuzzy control: quadratic stability, H control theory, and LMIs. IEEE Trans. on Fuzzy Systems 4(1), 1–12 (1996)CrossRefGoogle Scholar
  14. 14.
    Tanaka, K., Sugeno, M.: Stability and design of fuzzy control systems. Fuzzy Set and Systems 45(2), 135–156 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tanaka, K., Nishimuna, M., Wang, H.O.: Multi-objective fuzzy control of high rise/high speed elevators using LMIs. In: American Control Conference, Philadelphia, Pennsylvanie, June 1998, pp. 3450–3454 (1998)Google Scholar
  16. 16.
    Teixeira, M.C.M., Zak, S.H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE. Trans. on Fuzzy Systems 7(2), 133–140 (1999)CrossRefGoogle Scholar
  17. 17.
    Thierry, M.G., Laurent, V.: Control laws for Takagi-Sugeno fuzzy models. Fuzzy Sets and Systems 120, 95–108 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design: issues. IEEE. Trans. on Fuzzy Systems 4(l) (1996)Google Scholar
  19. 19.
    Bupp, R.T., Bernstein, D.S., Coppola, V.T.: A benchmark problem for nonlinear control design: problem statement, experimental testbed, and passive nonlinear compensation. In: Proceedings of American Control Conference, Seattle, WA, USA, June 21-23, vol. 6, pp. 4363–4367 (1995)Google Scholar
  20. 20.
    Wang, L.-X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wei Xie
    • 1
  • Huaiyu Wu
    • 2
  • Xin Zhao
    • 2
  1. 1.Satellite Venture Business LaboratoryKitami Institute of TechnologyHokkaidoJapan
  2. 2.College of Information Science and TechnologyWuhan University of Science and TechnologyWuhanP. R. China

Personalised recommendations