Advertisement

Model Checking for π-Calculus Using Proof Search

  • Alwen Tiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3653)

Abstract

Model checking for transition systems specified in π-calculus has been a difficult problem due to the infinite-branching nature of input prefix, name-restriction and scope extrusion. We propose here an approach to model checking for π-calculus by encoding it into a logic which supports reasoning about bindings and fixed points. This logic, called FOλ Δ ∇ , is a conservative extension of Church’s Simple Theory of Types with a “generic” quantifier. By encoding judgments about transitions in pi-calculus into this logic, various conditions on the scoping of names and restrictions on name instantiations are captured naturally by the quantification theory of the logic. Moreover, standard implementation techniques for (higher-order) logic programming are applicable for implementing proof search for this logic, as illustrated in a prototype implementation discussed in this paper. The use of logic variables and eigenvariables in the implementation allows for exploring the state space of processes in a symbolic way. Compositionality of properties of the transitions is a simple consequence of the meta theory of the logic (i.e., cut elimination). We illustrate the benefits of specifying systems in this logic by studying several specifications of modal logics for pi-calculus. These specifications are also executable directly in the prototype implementation of FOλ Δ ∇ .

Keywords

Model Check Modal Logic Transition System Inference Rule Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Information and Computation 148(1), 1–70 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Caries, L.: Behavioral and spatial observations in a logic for the pi-calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Dam, M.: Model checking mobile processes. Inf. Comput. 129(1), 35–51 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dam, M.: Proof systems for pi-calculus logics. Logic for concurrency and synchronisation, 145–212 (2003)Google Scholar
  5. 5.
    Eriksson, L.-H.: A finitary version of the calculus of partial inductive definitions. In: Eriksson, L.-H., Hallnäs, L., Schroeder-Heister, P. (eds.) ELP 1991. LNCS (LNAI), vol. 596, pp. 89–134. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. ACM Trans. Softw. Eng. Methodol. 12(4), 440–473 (2003)CrossRefGoogle Scholar
  7. 7.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)CrossRefGoogle Scholar
  8. 8.
    Girard, J.-Y.: A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu mailing list (February 1992) Google Scholar
  9. 9.
    Huet, G.: A unification algorithm for typed λ-calculus. Theoretical Computer Science 1, 27–57 (1975)CrossRefMathSciNetGoogle Scholar
  10. 10.
    McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theoretical Computer Science 232, 91–119 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    McDowell, R., Miller, D., Palamidessi, C.: Encoding transition systems in sequent calculus. Theoretical Computer Science 294(3), 411–437 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS (LNAI), vol. 475, pp. 253–281. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Miller, D.: Unification under a mixed prefix. J. of Symboluc Computation 14(4), 321–358 (1992)zbMATHCrossRefGoogle Scholar
  14. 14.
    Miller, D., Palamidessi, C.: Foundational aspects of syntax. In: ACM Comp. Surveys Symp. on Theoretical Computer Science: A Perspective, vol. 31. ACM, New York (1999)Google Scholar
  15. 15.
    Miller, D., Tiu, A.: A proof theory for generic judgments: An extended abstract. In: Proc. of LICS 2003, pp. 118–127. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part II. Information and Computation, 41–77 (1992)Google Scholar
  17. 17.
    Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical Computer Science 114(1), 149–171 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nipkow, T.: Functional unification of higher-order patterns. In: Vardi, M. (ed.) Proc. of LICS 1993, pp. 64–74. IEEE, Los Alamitos (1993)Google Scholar
  19. 19.
    Pientka, B.: Tabled Higher-Order Logic Programming. PhD thesis, Carnegie Mellon University (December 2003) Google Scholar
  20. 20.
    Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift, T., Warren, D.S.: Efficient model checking using tabled resolution. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Sangiorgi, D., Walker, D.: π-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  22. 22.
    Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) Proc. of LICS 1993, pp. 222–232. IEEE, Los Alamitos (1993)Google Scholar
  23. 23.
    Stärk, R.F.: Cut-property and negation as failure. International Journal of Foundations of Computer Science 5(2), 129–164 (1994)zbMATHCrossRefGoogle Scholar
  24. 24.
    Tiu, A.: Level 0/1 Prover: A tutorial (September 2004), Available online Google Scholar
  25. 25.
    Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania State University (May 2004) Google Scholar
  26. 26.
    Tiu, A., Miller, D.: A proof search specification of the π-calculus. In: 3rd Workshop on the Foundations of Global Ubiquitous Computing (September 2004)Google Scholar
  27. 27.
    Yang, P., Ramakrishnan, C., Smolka, S.: A logical encoding of the π-calculus: model checking mobile processes using tabled resolution. International Journal on Software Tools for Technology Transfer (STTT) 6(1), 38–66 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alwen Tiu
    • 1
  1. 1.INRIA LorraineVillers-lès-NancyFrance

Personalised recommendations