Multiport Interaction Nets and Concurrency

  • Damiano Mazza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3653)


We consider an extension of Lafont’s Interaction Nets, called Multiport Interaction Nets, and show that they are a model of concurrent computation by encoding the full π-calculus in them. We thus obtain a faithful graphical representation of the π-calculus in which every reduction step is decomposed in fully local graph-rewriting rules.


Active Pair Process Calculus Reaction Graph Concurrent Computation Invisible Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lafont, Y.: Interaction Nets. In: Conference Record of POPL 1990, pp. 95–108. ACM Press, New York (1990)Google Scholar
  2. 2.
    Milner, R.: Pi-nets: A graphical form of π-calculus. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 26–42. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Parrow, J.: Interaction diagrams. Nordic Journal of Computing 2, 407–443 (1995); A previous version appeared in de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.): REX 1993. LNCS, vol. 803, pp. 477–508. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Fu, Y.: Reaction Graph. Journal of Computer Science and Technology 13, 510–530 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Laneve, C., Parrow, J., Victor, B.: Solo Diagrams. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 127–144. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Laneve, C., Victor, B.: Solos in Concert. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 513–523. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Beffara, E., Maurel, F.: Concurrent nets: a study of prefixing in process calculi. In: Proceedings of EXPRESS 2004. ENTCS, vol. 128, pp. 67–86. Elsevier, Amsterdam (2005)Google Scholar
  8. 8.
    Yoshida, N.: Graph Notation for Concurrent Combinators. In: Ito, T., Yonezawa, A. (eds.) TPPP 1994. LNCS, vol. 907, pp. 393–412. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Alexiev, V.: Non-deterministic Interaction Nets. Ph.D. Thesis, University of Alberta (1999) Google Scholar
  10. 10.
    Khalil, L.: Généralisation des Réseaux d’Interaction avec amb, l’agent de Mc-Carthy: propriétés et applications. Ph.D. Thesis, École Normale Supérieure de Paris (2003) Google Scholar
  11. 11.
    Lafont, Y.: Interaction combinators. Information and Computation 137, 69–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sangiorgi, D., Walker, D.: The π-calculus — A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  13. 13.
    Pierce, B., Turner, D.: Pict: A Programming Language Based on the Pi-Calculus. CSCI Technical Report 476, Indiana University (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Damiano Mazza
    • 1
  1. 1.Institut de Mathématiques de Luminy 

Personalised recommendations