Transactions in RCCS

  • Vincent Danos
  • Jean Krivine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3653)


We propose a formalisation of the notion of transaction, using a variant of CCS, RCCS, that distinguishes reversible and irreversible actions, and incorporates a distributed backtrack mechanism. Any weakly correct implementation of a transaction in CCS, once embedded in RCCS, automatically obtains a correct one. We show examples where this method allows for a more concise implementation and a simpler proof of correctness.


Label Transition System Reversible Action Forward Transition Dine Philosopher Causal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milner, R.: Communication and Concurrency. International Series on Computer Science. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  2. 2.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 4.
    Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 411–427. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  5. 5.
    Degano, P., Priami, C.: Non interleaving semantics for mobile processes. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 660–667. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Opt. Theory Appl. 45(1) (1985)Google Scholar
  7. 7.
    Nestmann, U., Pierce, B.C.: Decoding choice encodings. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 179–194. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Palamidessi, C., Herescu, O.M.: A randomized encoding of the π-calculus with mixed choice. Theoretical Computer Science (2004) (to appear)Google Scholar
  9. 9.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Information and Computation 156(1-2) (2000)Google Scholar
  10. 10.
    Bruni, R., Laneve, C., Montanari, U.: Orchestrating transactions in join calculus. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Bergstra, J.A., Ponse, A., van Wamel, J.: Process algebra with backtracking. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 46–91. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long running transactions. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 124–138. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: extending Join. In: Proceedings of IFIP-TCS 2004, pp. 569–582 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vincent Danos
    • 1
  • Jean Krivine
    • 2
  1. 1.CNRS & Université Paris 7 
  2. 2.INRIA Rocquencourt & Université Paris 6 

Personalised recommendations