Advertisement

Merged Processes — A New Condensed Representation of Petri Net Behaviour

  • Victor Khomenko
  • Alex Kondratyev
  • Maciej Koutny
  • Walter Vogler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3653)

Abstract

Model checking based on Petri net unfoldings is an approach widely applied to cope with the state space explosion problem.

In this paper we propose a new condensed representation of a Petri net’s behaviour called merged processes, which copes well not only with concurrency, but also with other sources of state space explosion, viz. sequences of choices and non-safeness. Moreover, this representation is sufficiently similar to the traditional unfoldings, so that a large body of results developed for the latter can be re-used. Experimental results indicate that the proposed representation of a Petri net’s behaviour alleviates the state space explosion problem to a significant degree and is suitable for model checking.

Keywords

Merged processes Petri net unravelling Petri net unfolding state space explosion model checking formal verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software. IEEE Transactions on Software Engineering 22, 161–180 (1996)CrossRefGoogle Scholar
  3. 3.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Esparza, J.: Decidability and Complexity of Petri Net Problems — an Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Algorithm. Formal Methods in System Design 20, 285–310 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Heljanko, K.: Using Logic Programs with Stable Model Semantics to Solve Deadlock and Reachability Problems for 1-Safe Petri Nets. Fundamenta Informatica 37, 247–268 (1999)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD Thesis, School of Computing Science, University of Newcastle upon Tyne (2003) Google Scholar
  8. 8.
    Khomenko, V., Kondratyev, A., Koutny, M., Vogler, V.: Merged Processes — a New Condensed Representation of Petri Net Behaviour. Technical Report CS-TR-884, School of Computing Science, University of Newcastle (2005), http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/papers/CS-TR-884.pdf
  9. 9.
    Khomenko, V., Koutny, M., Vogler, V.: Canonical Prefixes of Petri Net Unfoldings. Acta Informatica 40, 95–118 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Khomenko, V., Koutny, M., Yakovlev, A.: Detecting State Coding Conflicts in STG Unfoldings Using SAT. Fundamenta Informatica 62, 221–241 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    McMillan, K.L.: Using Unfoldings to Avoid State Explosion Problem in the Verification of Asynchronous Circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–174. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    McMillan, K.L.: Symbolic Model Checking: an Approach to the State Explosion Problem. PhD thesis, CMU-CS-92-131 (1992) Google Scholar
  13. 13.
    Melzer, S., Römer, S.: Deadlock Checking Using Net Unfoldings. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 352–363. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Moskewicz, S., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. of DAC 2001, pp. 530–535. ASME Tech. Publ (2001)Google Scholar
  15. 15.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  16. 16.
    Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Victor Khomenko
    • 1
  • Alex Kondratyev
    • 2
  • Maciej Koutny
    • 1
  • Walter Vogler
    • 3
  1. 1.School of Computing ScienceUniversity of NewcastleU.K.
  2. 2.Cadence Berkeley LabsBerkeleyUSA
  3. 3.Institut für InformatikUniversität AugsburgGermany

Personalised recommendations