Nature-Inspired Computations Using an Evolving Multi-set of Agents

  • E. V. Krishnamurthy
  • V. K. Murthy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3611)


A multiset of agents can mimic the evolution of the nature-inspired computations, e.g., genetic, self-organized criticality and active walker (swarm and ant intelligence) models. Since the reaction rules are inherently parallel, any number of actions can be performed cooperatively or competitively among the subsets of the agents, so that the system evolve reaches an equilibrium, a chaotic or a self-organized emergent state. Examples of natural evolution , including wasp nest construction through a probabilistic shape-grammar are provided.


Quality Index Multiagent System Artificial Immune System Interaction Rule Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Cohen, Y., Breazeal, C.: Biologically-Inspired Intelligent Robotics. S.P.I.E. Press, Bellingham (2003)Google Scholar
  2. 2.
    Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From natural to artificial systems. Oxford University Press, London (1999)zbMATHGoogle Scholar
  4. 4.
    Camazine, S., et al.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  5. 5.
    Chu, S., et al.: Parallel Ant colony Systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 279–284. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Caro, G.D., Sampels, M.: Ant Algorithms 2002. LNCS, vol. 2463. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ebeling, W., Schweitzer, F.: Self-organization, Active Brownian Dynamics and biological Applications. Nova Acta Lepoldina 88, 169–188 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gorton, I., et al.: Evaluating agent Architectures: Cougaar, Aglets and AAA. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P.S.C. (eds.) SELMAS 2003. LNCS, vol. 2940, pp. 264–278. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Hoppen steadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)Google Scholar
  10. 10.
    Ilachinski, A.: Cellular Automata. World Scientific, Singapore (2001)zbMATHGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kauffman, London (2001)Google Scholar
  12. 12.
    Koza, J.R.: Genetic programming III. Morgan Kaufmann, San Francisco (1999)zbMATHGoogle Scholar
  13. 13.
    Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer, New York (2000)zbMATHGoogle Scholar
  14. 14.
    Murthy, V.K., Krishnamurthy, E.V.: Probabilistic Parallel Programming based on multiset transformation. Future generation Computer systems 11, 283–293 (1995)CrossRefGoogle Scholar
  15. 15.
    Nishimura, H., et al.: Neural chaos scheme for perceptual conflicts. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 170–196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Pacino, K.M.: Biomimicry of bacterial foraging for distributed optimisation and control. IEEE Control System Magazine 22(3), 52–68 (2002)CrossRefGoogle Scholar
  17. 17.
    Sankar, P.V., Krishnamurthy, E.V.: On the compactness of subsets of digital pictures. Computer Graphics and image Processing 8, 136–143 (1978)CrossRefGoogle Scholar
  18. 18.
    Serugendo, D.M., et al.: Self Organization: Paradigms and Applications. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Shakshuki, E., Jun, Y.: Multi-agent development toolkits: An Evaluation. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 209–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Stepney, S., et al.: Artificial Immune System and the grand challenges for non-classical computation. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 204–216. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Suzuki, Y., et al.: Artificial Life applications of a class of P systems: Abstract rewriting systems on Multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 299–346. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Turing, A.M.: The chemical basis for morphogenesis. Phil. Trans. Roy. Soc. London 237, 37–79 (1952)CrossRefGoogle Scholar
  23. 23.
    Wolfram, S.: A New kind of Science, vol. Ill. Wolfram Media Inc., Champaign (2002)zbMATHGoogle Scholar
  24. 24.
    Woolridge, M.: Introduction to Multi-Agent systems. John Wiley, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. V. Krishnamurthy
    • 1
  • V. K. Murthy
    • 2
  1. 1.Computer Sciences LaboratoryAustralian National UniversityCanberraAustralia
  2. 2.School of Business Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations