Given an undirected graph G(V,E) with terminal set T ⊆ V the problem of packing element-disjoint Steiner trees is to find the maximum number of Steiner trees that are disjoint on the nonterminal nodes and on the edges. The problem is known to be NP-hard to approximate within a factor of Ω(logn), where n denotes |V|. We present a randomized O(logn)-approximation algorithm for this problem, thus matching the hardness lower bound. Moreover, we show a tight upper bound of O(logn) on the integrality ratio of a natural linear programming relaxation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Lund, C.: Hardness of approximations. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard Problems, PWS Publishing (1996)Google Scholar
  2. 2.
    Bang-Jensen, J., Thomassé, S.: Highly connected hypergraphs containing no two edge-disjoint spanning connected subhypergraphs. Discrete Applied Mathematics 131(2), 555–559 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cheriyan, J., Salavatipour, M.: Hardness and approximation results for packing Steiner trees. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 180–191. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Diestel, R.: Graph Theory. Springer, New York (2000)Google Scholar
  5. 5.
    Feige, U., Halldorsson, M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. SIAM J.Computing 32(1), 172–195 (2002); Earlier version in STOC 2000zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Multicast time maximization in energy constrained wireless networks. In: Proc. Joint Workshop on Foundations of Mobile Computing, DIALM-POMC 2003 (2003)Google Scholar
  7. 7.
    Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected subhypergraphs. Discrete Applied Mathematics 131(2), 373–383 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: polyhedral investigations. Math. Prog. A 72(2), 101–123 (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: a cutting plane algorithm. Math. Prog. A 72(2), 125–145 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: separation algorithms. SIAM J. Disc. Math. 9, 233–257 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Grötschel, M., Martin, A., Weismantel, R.: Packing Steiner trees: further facets. European J. Combinatorics 17(1), 39–52 (1996)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in VLSI design. Mathematical Programming 78, 265–281 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and connected dominating sets. Information and Computation 150, 57–74 (1999); Preliminary version in FST&TCS 1998CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hind, H.R., Oellermann, O.: Menger-type results for three or more vertices Congressus Numerantium 113, 179–204 (1996)Google Scholar
  15. 15.
    Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proc. ACM SIAM SODA (2003)Google Scholar
  16. 16.
    Jain, K., Mandoiu, I., Vazirani, V., Williamson, D.: A primal-dual schema based approximation algorithm for the element connectivity problem. In: Proc. ACM-SIAM SODA, pp. 99–106 (1999)Google Scholar
  17. 17.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for nodeweighted Steiner trees. Journal of Algorithms 19, 104–115 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kriesell, M.: Edge-disjoint trees containing some given vertices in a graph. J. Combinatorial Theory (B) 88, 53–65 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lau, L.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. In: Proc. IEEE FOCS (2004)Google Scholar
  20. 20.
    Lau, L.: Packing Steiner forests. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 362–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Martin, A., Weismantel, R.: Packing paths and Steiner trees: Routing of electronic circuits. CWI Quarterly 6, 185–204 (1993)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joseph Cheriyan
    • 1
  • Mohammad R. Salavatipour
    • 2
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations