Reconstructive Dispersers and Hitting Set Generators

  • Christopher Umans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3624)

Abstract

We give a generic construction of an optimal hitting set generator (HSG) from any good “reconstructive” disperser. Past constructions of optimal HSGs have been based on such disperser constructions, but have had to modify the construction in a complicated way to meet the stringent efficiency requirements of HSGs. The construction in this paper uses existing disperser constructions with the “easiest” parameter setting in a black-box fashion to give new constructions of optimal HSGs without any additional complications.

Our results show that a straightforward composition of the Nisan-Wigderson pseudorandom generator that is similar to the composition in works by Impagliazzo, Shaltiel and Wigderson in fact yields optimal HSGs (in contrast to the “near-optimal” HSGs constructed in those works). Our results also give optimal HSGs that do not use any form of hardness amplification or implicit list-decoding – like Trevisan’s extractor, the only ingredients are combinatorial designs and any good list-decodable error-correcting code.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48, 860–879 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. JCSS: Journal of Computer and System Sciences 62 (2001)Google Scholar
  3. 3.
    Ta-Shma, A., Zuckerman, D., Safra, S.: Extractors from Reed-Muller codes. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (2001)Google Scholar
  4. 4.
    Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudorandom generator. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (2001)Google Scholar
  5. 5.
    Impagliazzo, R., Shaltiel, R., Wigderson, A.: Near-optimal conversion of hardness into pseudo-randomness. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 181–190 (1999)Google Scholar
  6. 6.
    Impagliazzo, R., Shaltiel, R., Wigderson, A.: Extractors and pseudo-randomn generators with optimal seed-length. In: Proceedings of the Thirty-second Annual ACM Symposium on the Theory of Computing (2000)Google Scholar
  7. 7.
    Ta-Shma, A., Umans, C., Zuckerman, D.: Loss-less condensers, unbalanced expanders, and extractors. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 143–152 (2001)Google Scholar
  8. 8.
    Umans, C.: Pseudo-random generators for all hardnesses. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 627–634 (2002)Google Scholar
  9. 9.
    Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49, 149–167 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 220–229 (1997)Google Scholar
  11. 11.
    Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Transactions on Information Theory 50, 3015–3025 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Guruswami, V.: Better extractors for better codes? In: STOC, pp. 436–444 (2004)Google Scholar
  13. 13.
    Ta-Shma, A.: Storing information with extractors. Inf. Process. Lett. 83, 267–274 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Buhrman, H., Lee, T., van Melkebeek, D.: Language compression and pseudorandom generators. In: IEEE Conference on Computational Complexity, pp. 15–28 (2004)Google Scholar
  15. 15.
    Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness vs. randomness tradeoffs for Arthur-Merlin games. In: 18th Annual IEEE Conference on Computational Complexity (2003)Google Scholar
  16. 16.
    Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using hitting sets. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 71–80 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christopher Umans
    • 1
  1. 1.Computer Science DepartmentCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations