Advertisement

Abstract

We consider monotonicity testing of functions f:[n] d → {0,1}, in the property testing framework of Rubinfeld and Sudan [23] and Goldreich, Goldwasser and Ron [14]. Specifically, we consider the framework of distribution-free property testing, where the distance between functions is measured with respect to a fixed but unknown distribution D on the domain and the testing algorithms have an oracle access to random sampling from the domain according to this distribution D. We show that, though in the uniform distribution case, testing of boolean functions defined over the boolean hypercube can be done using query complexity that is polynomial in \(\frac{1}{\epsilon}\) and in the dimension d, in the distribution-free setting such testing requires a number of queries that is exponential in d. Therefore, in the high-dimensional case (in oppose to the low-dimensional case), the gap between the query complexity for the uniform and the distribution-free settings is exponential.

Keywords

Boolean Function Monotone Function Query Complexity Property Testing Membership Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. In: FOCS 1999, pp. 656–666 (1999)Google Scholar
  2. 2.
    Batu, T., Rubinfeld, R., White, P.: Fast approximation PCPs for multidimensional bin-packing problems. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 245–256. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Blum, M., Luby, M., Rubinfeld, R.: Self testing/correcting with applications to numerical problems. Journal of Computer and System Science 47, 549–595 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: FOCS 2002, pp. 93–102 (2002)Google Scholar
  5. 5.
    Czumaj, A., Sohler, C.: Testing hypergraph coloring. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 493–505. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Ergün, E., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spotcheckers. Journal of Computing and System Science 60, 717–751 (2000) (a preliminary version appeared in STOC 1998)CrossRefGoogle Scholar
  8. 8.
    Fischer, E.: On the strength of comparisons in property testing (available at ECCC 8(8) (2001) (manuscript)Google Scholar
  9. 9.
    Fischer, E.: The art of uninformed decisions: A primer to property testing. The Computational Complexity Column of The bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)zbMATHGoogle Scholar
  10. 10.
    Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: STOC 2002, pp. 474–483 (2002)Google Scholar
  11. 11.
    Fischer, E., Newman, I.: Testing of matrix properties. In: STOC 2001, pp. 286– 295 (2001)Google Scholar
  12. 12.
    Goldreich, O.: Combinatorical property testing – a survey. In: Randomized Methods in Algorithms Design, AMS-DIMACS, pp. 45–61 (1998)Google Scholar
  13. 13.
    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000) (a preliminary version appeared in FOCS 1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45(4), 653–750 (1998) (a preliminary version appeared in FOCS 1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: STOC 1997, pp. 406–415 (1997)Google Scholar
  16. 16.
    Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. In: FOCS 2001, pp. 302–317 (2001)Google Scholar
  17. 17.
    Halevy, S., Kushilevitz, E.: Distribution-free property testing. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 721–732. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 393–404. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Kearns, M.J., Vzirani, U.V.: An introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  22. 22.
    Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolin, J.D.P. (eds.) Handbook of Randomized Computing. Kluwer Press, Dordrecht (2001)Google Scholar
  23. 23.
    Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal of Computing 25(2), 252–271 (1996) (first appeared as a technical report, Cornell University, 1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shirley Halevy
    • 1
  • Eyal Kushilevitz
    • 1
  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations