We present the first constant-factor approximation algorithms for the following problem: Given a metric space (V,c), a set D ⊆ V of terminals/ customers with demands d:D→ℝ + , a facility opening cost f ∈ ℝ +  and a capacity u ∈ ℝ + , find a partition \(D=D_1\dot{\cup}\cdots\dot{\cup} D_k\) and Steiner trees T i for D i (i=1,...,k) with c(E(T i ))+d(D i )≤ u for i=1,...,k such that ∑\(_{i=1}^{k}\) c(E(T i )) + kf is minimum.

This problem arises in VLSI design. It generalizes the bin-packing problem and the Steiner tree problem. In contrast to other network design and facility location problems, it has the additional feature of upper bounds on the service cost that each facility can handle.

Among other results, we obtain a 4.1-approximation in polynomial time, a 4.5-approximation in cubic time and a 5-approximation as fast as computing a minimum spanning tree on (D,c).


Approximation Algorithm Network Design Facility Location Minimum Span Tree Steiner Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S.: Polynomial time approximation schemes for euclidean tsp and other geometric problems. Journal of the ACM 45, 753–782 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, CS-93-13, G.S.I.A., Carnegie Mellon University, Pittsburgh (1976)Google Scholar
  3. 3.
    Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for a capacitated facility location problem. In: Proceedings of the 10th annual ACM-SIAM symposium on Discrete algorithms (SODA 1999), pp. 875–876 (1999)Google Scholar
  4. 4.
    Du, D.-Z., Zhang, Y., Feng, Q.: On better heuristic for Euclidean Steiner minimum trees. In: 32nd Annual IEEE Symposium on Foundations of Computer Science, pp. 431–439 (1991)Google Scholar
  5. 5.
    Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering graphs using trees and stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing steiner minimal trees. SIAM Journal on Applied Mathematics 32, 835–859 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: The rectilinear steiner problem is np-complete. SIAM Journal on Applied Mathematics 32, 826–834 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hanan, M.: On steiner’s problem with rectilinear distance. SIAM Journal on Applied Mathematics 14(2), 255–265 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Held, S., Korte, B., Maßberg, J., Ringe, M., Vygen, J.: Clock scheduling and clocktree construction for high performance asics. In: Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design (ICCAD 2003), pp. 232–240. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  10. 10.
    Hwang, F.K.: On steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics 30, 104–114 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the onedimensional bin packing problem. In: 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 312–320 (1982)Google Scholar
  12. 12.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  13. 13.
    Korte, B., Vygen, J.: Combinatorial Optimization, Theory and Algorithms, 3rd edn. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Mahdian, M., Ye, Y., Zhang, J.: A 2-approximation algorithm for the soft-capacitated facility location problem. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 129–140. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Matsuyama, A., Takahashi, H.: An approximate solution for the steiner problem in graphs. Mathematica Japonica 24(6), 573–577 (1980)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: Symposium on Discrete Algorithms, pp. 770–779 (2000)Google Scholar
  17. 17.
    Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Research Logistics 41, 579–585 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM monographs on discrete mathematics and applications (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jens Maßberg
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations