Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. In: Proceedings of the 36th STOC, pp. 272–280 (2004)Google Scholar
  2. 2.
    Papadimitriou, C., Safra, S.: The complexity of low-distortion embeddings between point sets. In: Proceedings of the 16th SODA, pp. 112–118 (2005)Google Scholar
  3. 3.
    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Tutorial at the 42nd FOCS, pp. 10–33 (2001)Google Scholar
  4. 4.
    Linial, N.: Finite metric spaces – combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians III, Beijing, pp. 573–586 (2002)Google Scholar
  5. 5.
    Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Web-page of the working group on multi-dimensional scaling (2005),
  7. 7.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bourgain, J.: On lipschitz embedding of finite metric spaces into hilbert space. Isreal Journal of Mathematics 52, 46–52 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kleinberg, J., Slivkins, A., Wexler, T.: Triangulation and embedding using small sets of beacons. In: Proceedings of the 45th FOCS, pp. 444–453 (2004)Google Scholar
  10. 10.
    Slivkins, A.: Distributed approaches to triangulation and embedding. In: Proceedings of the 16th SODA, pp. 640–649 (2005)Google Scholar
  11. 11.
    B˘adoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Räcke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: Proceedings of the 16th SODA, pp. 119–128 (2005)Google Scholar
  12. 12.
    Håstad, J., Ivansson, L., Lagergren, J.: Fitting points on the real line and its application to RH mapping. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 465–467. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Bădoiu, M.: Approximation algorithm for embedding metrics into a twodimensional space. In: Proceedings of the 14th SODA, pp. 434–443 (2003)Google Scholar
  14. 14.
    Bădoiu, M., Indyk, P., Rabinovich, Y.: Approximate algorithms for embedding metrics into low dimensional spaces (2003) (manuscript)Google Scholar
  15. 15.
    Feige, U.: Approximating the bandwidth via volume respecting embeddings. Journal of Computer and System Sciences 60, 510–539 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Point matching under nonuniform distortions. Discrete Applied Mathematics 127, 5–21 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander Hall
    • 1
  • Christos Papadimitriou
    • 2
  1. 1.ETH ZürichSwitzerland
  2. 2.UC BerkeleyUSA

Personalised recommendations