Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective

  • Kamyar Sarshar
  • Peter Loos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3649)

Abstract

This contribution describes the results of a laboratory experiment which compares the Event-driven Process Chain (EPC) and Petri net (C/E net) regarding their approaches to represent the control-flow of processes. The outcome of the experiment indicates that from end-user perspective the EPC approach of applying connectors is superior to the token game. However, the non-local semantic of the EPC OR-connector clearly had a negative impact on end-user comprehension. The experiment also illustrates that the perceived ease-of-use and the intention to use the EPC notation is higher than C/E net.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batra, D., Davis, J.G.: Conceptual Data Modelling in Database Design: Similarities and Differences between Expert and Novice Designers. International Journal of Man- Machine Studies 37(1), 83–101 (1992)CrossRefGoogle Scholar
  2. 2.
    Bock, D.B., Ryan, T.: Accuracy in modeling with extended entity relationship and object oriented data models. Journal of Database Management 4(4), 30–40 (1993)Google Scholar
  3. 3.
    Bodart, F., et al.: Should optional properties be used in conceptual modelling? A theory and three empirical tests. Information Systems Research 12(4), 384–405 (2001)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Boehm-Davis, D., Fregly, A.: Documentation of Concurrent Programs. Human Factors 27, 423–432 (1985)Google Scholar
  5. 5.
    Chen, R., Scheer, A.-W.: Modellierung von Prozeßketten mittels Petri-Netz-Theorie. In: Scheer, A.-W. (ed.) Veröffentlichungen des Instituts für Wirtschaftsinformatik, Saarbrücken (1994)Google Scholar
  6. 6.
    Davies, I., Green, P., Rosemann, M.: Exploring Proposed Ontological Issues of ARIS with Four Different Types of Modellers. In: Proc. Proceedings of the Australasian Conference on Information Systems (ACIS 2004), Hobart (2004)Google Scholar
  7. 7.
    Davis, R.: Business process modelling with ARIS: a practical guide. Springer, London (2001)Google Scholar
  8. 8.
    Green, P., Rosemann, M.: Integrated Process Modeling: An Ontological Evaluation. Information Systems 25(2), 73–87 (2000)CrossRefGoogle Scholar
  9. 9.
    Green, P., Rosemann, M.: An Ontological Analysis of Integrated Process Modelling. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 225–240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Green, P., Rosemann, M.: Perceived Ontological Weaknesses of Process Modeling Techniques: Further Evidence. In: Proc. Proceedings of the 10th European Conference on Information Systems (ECIS 2002), Gdansk, Poland, pp. 312–321 (2002)Google Scholar
  11. 11.
    Jarvenpaa, S.L., Machesky, J.J.: Data Analysis and Learning: An Experimental Study of Data Modeling Tools. International Journal of Man-Machine Studies 31, 367–391 (1989)CrossRefGoogle Scholar
  12. 12.
    Juhn, S.H., Naumann, J.D.: The effectiveness of data representation characteristics on user validation. In: Proc. Proceedings of the Sixth International Conference on Information Systems, pp. 212–226. Indianapolis, Indiana (1985)Google Scholar
  13. 13.
    Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grundlage "Ereignisgesteuerter Prozeßketten (EPK). In: Scheer, A.-W. (ed.) Veröffentlichungen des Instituts für Wirtschaftsinformatik, Saarbrücken (1992)Google Scholar
  14. 14.
    Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation: Iterative Process Prototyping. Addison-Wesley, Reading (1998)Google Scholar
  15. 15.
    Kim, Y.-G., March, S.T.: Comparing data modeling formalisms. Communications of the ACM 38(6), 103–115 (1995)CrossRefGoogle Scholar
  16. 16.
    Langner, P., Schneider, C., Wehler, J.: Petri Net Based Certification of Event-Driven Process Chains. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, p. 286. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Moher, T., et al.: Comparing the Comprehensibility of Textual and Graphical Programs: The Case of Petri Nets. In: Proc. Empirical Studies of Programmers: Fifth Workshop, pp. 137–161 (1993)Google Scholar
  18. 18.
    Moody, D.L.: Comparative Evaluation of Large Data Model Representation Methods: The Analyst.s Perspective. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 214–231. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Mylopoulos, J.: Information modeling in the time of the revolution. Information Systems 23(3-4), 127–155 (1998)CrossRefGoogle Scholar
  20. 20.
    Oberweis, A., et al.: INCOME/WF A Petri Net Based Approach to Workflow Management. In: Proc. Wirtschaftsinformatik 1997. Internationale Geschäftstätigkeit auf der Basis flexibler Organisationsstrukturen und leistungsfähiger Informationssysteme, pp. 557–580. Physica- Verlag, Heidelberg (1997)Google Scholar
  21. 21.
    Rodenhagen, J.: Darstellung ereignisgesteuerter Prozeßketten (EPK) mit Hilfe von Petrinetzen. Masterthesis. Universität Hamburg, Hamburg (1997)Google Scholar
  22. 22.
    Sarshar, K., Dominitzki, P., Loos, P.: Comparing the Control-Flow of EPC and Petri Net from the End-User Perspective - Statistical Results of a Laboratory Experiment. In: Working Papers of the Research Group Information Systems & Management Nr. 25 (www.isym.de), Mainz (2005)Google Scholar
  23. 23.
    Scheer, A.-W.: Business process engineering: reference models for industrial enterprises. Springer, Berlin (1998)Google Scholar
  24. 24.
    Scheer, A.-W., Nüttgens, M., Zimmermann, V.: Rahmenkonzept für ein integriertes Geschäftsprozeßmanagement. Wirtschaftsinformatik 37(5), 426–434 (1995)Google Scholar
  25. 25.
    Siau, K., Rossi, M.: Evaluation of Information Modeling Methods - A Review. In: Proc. Proceedings of the Thirty-First Annual Hawaii International Conference on System Sciences (HICSS), Kohala Coast, Hawaii, USA, pp. 314–322 (1998)Google Scholar
  26. 26.
    Sinha, A.P., Vessey, I.: An Empirical Investigation of Entity-based and Objectoriented Data Modeling: A Development Life Cycle Approach. In: Proc. International Conference on Information Systems, pp. 229–244. Charlotte, North Carolina (1999)Google Scholar
  27. 27.
    Swigger, K., Brazile, R.: Experimental Comparisons of Design/Documentation Formats for Expert Systems. International Journal of Man-Machine Studies 31(4), 47–60 (1989)CrossRefGoogle Scholar
  28. 28.
    Swigger, K.M., Brazile, R.P.: An empirical study of the effects of design/ documentation formats on expert system modifiability. In: Proc. Empirical Studies of Programmers: Fourth Workshop, Norwood, NJ, pp. 210–226 (1991)Google Scholar
  29. 29.
    van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Information and Software Technology 41(10), 639–650 (1999)CrossRefGoogle Scholar
  30. 30.
    van der Aalst, W.M.P.: Modelling and analysing workflow using a Petri-net based approach. In: Proc. 2nd Workshop on Computer-Supported Cooperative Work, Petri nets and related formalisms, Zaragoza, Spain, pp. 31–50 (1994)Google Scholar
  31. 31.
    van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious circle. In: Proc. EPK 2002 - Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Proceedings des GI-Workshops und Arbeitskreistreffens, Trier, pp. 71–79 (2002)Google Scholar
  32. 32.
    Weber, R.: Are Attributes Entities? A Study of Database Designer’s Memory Structures. Information Systems Research 7(2), 137–162 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kamyar Sarshar
    • 1
  • Peter Loos
    • 1
  1. 1.Lehrstuhl für Wirtschaftsinformatik und BWL, ISYM – Information Systems & ManagementJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations