DNA Computing Model of Graph Isomorphism Based on Three Dimensional DNA Graph Structures

  • Zhixiang Yin
  • Jianzhong Cui
  • Jing Yang
  • Guangwu Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3645)


An DNA computing model of solving the graph isomorphism problem with 3-D DNA structures is proposed in this paper. The k-armed branched junction molecules are used to encode k-degree vertices. Double stranded molecules are used to encode edges. These molecules are to be mixed in a test tube to be ligated. The reaction product can be detected by gel electrophoresis. The time complexity of the algorithm is o(n 2) , where n is the number of vertices of the graph.


Graph Isomorphism Maximal Clique Problem Graph Isomorphism Problem Chinese Postman Problem Post Correspondence Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Lipton, R.J.: DNA solution of hard computation problem. Science 268, 583–585 (1995)CrossRefGoogle Scholar
  3. 3.
    Cukras, A.R., Faulhammer, D., Lipton, R.J., et al.: Chess games: A model for RNA-based computation. Biosystems 52, 35–45 (1999)CrossRefGoogle Scholar
  4. 4.
    Ouyang, Q.: DNA solution of the maximal clique problem. Science 278, 446–449 (1997)CrossRefGoogle Scholar
  5. 5.
    Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular Computation by DNA Hairpin Formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  6. 6.
    Liu, Q.H.: DNA computing on surfaces. Nature 403, 175–179 (2000)CrossRefGoogle Scholar
  7. 7.
    Wu, H.Y.: An improved surface-based method for DNA computation. Boisystems 59, 1–5 (2001)CrossRefGoogle Scholar
  8. 8.
    Benenson, Y., Paz-Elizur, T., Adar, R., et al.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)CrossRefGoogle Scholar
  9. 9.
    Braich, R.S., Chelyapov, N., Johnson, C., et al.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002)CrossRefGoogle Scholar
  10. 10.
    Smith, L.M., Corn, R.M., Condon, A.E., et al.: A surface-based approach to DNA computation. Journal of Computational Biology 5, 255–267 (1998)CrossRefGoogle Scholar
  11. 11.
    Jonoska, N., Karl, S.A., Saito, M.: Three dimensional DNA structures in computing. In: Proceeding of the 4th DNA Based Computing Workshop. Springer, Philadephia (1998)Google Scholar
  12. 12.
    Yin, Z.X., Zhang, F.Y., Xu, J.: The general 0-1 programming problem based on DNA computing. Biosystems 70, 73–79 (2003)CrossRefGoogle Scholar
  13. 13.
    Paun, G., Grzegorz, R., Arto, S.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  14. 14.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. The Macmillan Press Ltd., New York (1976)Google Scholar
  15. 15.
    Breslauer, K.J., Frank, R., Blocker, H., et al.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. 83, 3745–3750 (1986)CrossRefGoogle Scholar
  16. 16.
    Pancoska, P., Moravek, Z., Moll, U.M.: Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs. Nucleic Acids Research 15, 4630–4645 (2004)CrossRefGoogle Scholar
  17. 17.
    Beigel, R., Fu, B.: Molecular Approximation Algorithm for NP Optimization Problems. In: 3rd DIMACS Meeting on DNA Based Computers. Univ. of Penns (1997)Google Scholar
  18. 18.
    Kari, L., Gloor, G., Yu, S.: Using DNA to solve the Bounded Post Correspondence Problem. Theoretical Computer Science 2, 193–203 (2000)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Liu, Y., Xu, J., Pan, L., et al.: DNA solution of a graph coloring problem. Journal of Chemical Information and Computer Science 42, 524–528 (2002)Google Scholar
  20. 20.
    Liu, Y., Guo, X., Xu, J., et al.: Some Notes on 2-D Graphical Representation of DNA Sequence. Journal of Chemical Information and Computer Science 42, 529–533 (2002)Google Scholar
  21. 21.
    Liu, W.B., Xu, J.: A DNA Algorithm for the Graph Coloring Problem. Journal of Chemical Information and Computers 42, 1176–1178 (2002)Google Scholar
  22. 22.
    Yin, Z., Zhang, F., Xu, J.: A Chinese postman problem based on DNA computing. Journal of Chemical Information and Computer Sciences 42, 222–224 (2002)Google Scholar
  23. 23.
    Yin, Z.X., Zhang, F.Y., Xu, J.: A General 0-1 Programming Problem Based on DNA Computing. Biosystem 70, 73–78 (2003)CrossRefGoogle Scholar
  24. 24.
    Liu, W.B., Wang, S.D., Xu, J.: DNA Sequence Design Based on Template Strategy. J. Chem. Inf. Comput. Sci. 43, 1876–1881 (2003)MathSciNetGoogle Scholar
  25. 25.
    Liu, W.B., Wang, S.D., Xu, J.: Solving the 3-SAT Problem Based on DNA Computing. J. Chem. Inf. Comput. Sci. 11, 1942–1946 (2003)Google Scholar
  26. 26.
    Liu, W.B., Wang, S.D., Xu, J.: The Hamiltonian Cycle Problem Based on DNA Computing. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning, vol. 1, pp. 313–317 (2002)Google Scholar
  27. 27.
    Wang, S.: DNA Computing of Bipartite Graphs for Maximum Matching. Journal of Mathematical Chemistry 31, 271–279 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pan, L.Q., Xu, J.: A Surface-Based DNA Algorithm for the minimal vertex cover Problem. Progress in Natural Science 13, 81–84 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zhixiang Yin
    • 1
  • Jianzhong Cui
    • 1
  • Jing Yang
    • 1
  • Guangwu Liu
    • 2
  1. 1.Department of Mathematics and PhysicsAnHui University of Science and TechnologyHuainan CityChina
  2. 2.Department of MathematicsWuhan University of TechnologyWuhan CityChina

Personalised recommendations