New Method for Intrusion Features Mining in IDS

  • Wu Liu
  • Jian-Ping Wu
  • Hai-Xin Duan
  • Xing Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3644)

Abstract

In this paper, we aim to develop a systematic framework to semi-automate the process of system logs and databases of intrusion detection systems (IDS). We use both Ef-attribute based mining and Es-attribute based mining to mine effective and essential attributes (hence interesting patterns) from the vast and miscellaneous system logs and IDS databases.

Keywords

Beach Posit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 25th VLDB Conference, Santiago, Chile (2004)Google Scholar
  2. 2.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the 6th International Conference on Information and Knowledge Management, Gainthersburg, MD (2002)Google Scholar
  3. 3.
    Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York (August 1998)Google Scholar
  4. 4.
    Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining, Newport Beach, California (August 2001)Google Scholar
  5. 5.
    Liu, W.: Study on Intrusion Detection Technology with Traceback and Isolation of Attacking Sources, PhD Thesis (2004) Google Scholar
  6. 6.
    Lent, B., Swami, A., Widom, J.: Clustering association rules. In: Proceedings of the 13th International Conference on Data Engineering, Birmingham, UK (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wu Liu
    • 1
  • Jian-Ping Wu
    • 1
  • Hai-Xin Duan
    • 1
  • Xing Li
    • 1
  1. 1.Network Research Center of Tsinghua UniversityBeijingP. R. China

Personalised recommendations