Advertisement

Modelling Surface Normal Distribution Using the Azimuthal Equidistant Projection

  • William A. P. Smith
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

This paper describes how surface shape, and in particular facial shape, can be modeled using a statistical model that captures variations in surface normal direction. To construct this model we make use of the azimuthal equidistant projection to map surface normals from the unit sphere to points on a local tangent plane. The variations in surface normal direction are captured using the covariance matrix for the projected point positions. This allows us to model variations in surface shape using a standard point distribution model. We show how this model can be trained using surface normal data acquired from range images. We fit the model to intensity data using constraints on the surface normal direction provided by Lambert’s law. We demonstrate the utility of the method on the recovery of 3D surface shape from 2D images.

Keywords

Surface Normal Tangent Plane Range Image Facial Shape Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. PAMI 21, 690–706 (1999)Google Scholar
  2. 2.
    Gregory, R.L.: Knowledge in perception and illusion. Phil. Trans. R. Soc. Lond. B 352, 1121–1128 (1997)CrossRefGoogle Scholar
  3. 3.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23, 643–660 (2001)Google Scholar
  4. 4.
    Atick, J.J., Griffin, P.A., Redlich, A.N.: Statistical approach to SFS: Reconstruction of 3D face surfaces from single 2D images. Neural Comp. 8, 1321–1340 (1996)CrossRefGoogle Scholar
  5. 5.
    Zhao, W.Y., Chellappa, R.: Illumination-insensitive face recognition using symmetric SFS. In: Proc. CVPR (2000)Google Scholar
  6. 6.
    Samaras, D., Metaxas, D.: Illumination constraints in deformable models for shape and light direction estimation. IEEE Trans. PAMI 25, 247–264 (2003)Google Scholar
  7. 7.
    Castelán, M., Hancock, E.R.: Acquiring height maps of faces from a single image. In: Proc. 3DPVT, pp. 183–190 (2004)Google Scholar
  8. 8.
    Prados, E., Faugeras, O.: A rigorous and realistic shape from shading method and some of its applications. Technical Report RR-5133, INRIA (2004)Google Scholar
  9. 9.
    Heap, T., Hogg, D.: Extending the point distribution model using polar coordinates. Image and Vision Computing 14, 589–599 (1996)CrossRefGoogle Scholar
  10. 10.
    Snyder, J.P.: Map Projections–A Working Manual, U.S.G.S. Professional Paper 1395. United States Government Printing Office, Washington D.C (1987)Google Scholar
  11. 11.
    Cootes, T.F., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proc. BMVC, pp. 9–18 (1992)Google Scholar
  12. 12.
    Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Trans. PAMI 21, 1250–1267 (1999)Google Scholar
  13. 13.
    Worthington, P.L., Hancock, E.R.: Surface topography using shape-from-shading. Pattern Recognition 34, 823–840 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Quart. Applied Mathematics XLV, 561–590 (1987)MathSciNetGoogle Scholar
  15. 15.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. PAMI 10, 439–451 (1988)zbMATHGoogle Scholar
  16. 16.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conf. CVPR, pp. 586–591 (1991)Google Scholar
  17. 17.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William A. P. Smith
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceThe University of YorkYorkUK

Personalised recommendations