An Heuristic Analysis of the Classification of Bivariate Subdivision Schemes

  • Neil A. Dodgson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

Alexa [1] and Ivrissimtzis et al. [2] have proposed a classification mechanism for bivariate subdivision schemes. Alexa considers triangular primal schemes, Ivrissimtzis et al. generalise this both to quadrilateral and hexagonal meshes and to dual and mixed schemes. I summarise this classification and then proceed to analyse it in order to determine which classes of subdivision scheme are likely to contain useful members. My aim is to ascertain whether there are any potentially useful classes which have not yet been investigated or whether we can say, with reasonable confidence, that all of the useful classes have already been considered.

I apply heuristics related to the mappings of element types (vertices, face centres, and mid-edges) to one another, to the preservation of symmetries, to the alignment of meshes at different subdivision levels, and to the size of the overall subdivision mask. My conclusion is that there are only a small number of useful classes and that most of these have already been investigated in terms of linear, stationary subdivision schemes. There is some space for further work, particularly in the investigation of whether there are useful ternary linear, stationary subdivision schemes, but it appears that future advances are more likely to lie elsewhere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M.: Refinement operators for triangle meshes. Computer Aided Geometric Design 19, 169–172 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M.A.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 22, 99–109 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Sloan, I.H., Joe, S.: Lattice methods for multiple integration. Oxford Science Publications, Oxford (1994)MATHGoogle Scholar
  4. 4.
    Warren, J., Weimer, H.: Subdivision Methods for Geometric Design. Morgan Kaufmann, San Francisco (2001)Google Scholar
  5. 5.
    Martin, G.E.: Transformation Geometry. Springer, New York (1982)MATHGoogle Scholar
  6. 6.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350–355 (1978)CrossRefGoogle Scholar
  7. 7.
    Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 356–360 (1978)CrossRefGoogle Scholar
  8. 8.
    Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)Google Scholar
  9. 9.
    Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16, 420–431 (1997)CrossRefGoogle Scholar
  10. 10.
    Peters, J., Shiue, L.J.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 980–1003 (2004)CrossRefGoogle Scholar
  11. 11.
    Velho, L.: Quasi 4-8 subdivision. Computer Aided Geometric Design 18, 299–379 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Velho, L., Zorin, D.: 4-8 subdivision. Computer Aided Geometric Design 18, 397–427 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kobbelt, L.: \(\sqrt{3}\)-Subdivision. In: SIGGRAPH 2000 Conference Proceedings, pp. 103–112 (2000)Google Scholar
  14. 14.
    Claes, J., Beets, K., van Reeth, F.: A corner-cutting scheme for hexagonal subdivision surfaces. In: Proceedings of Shape Modelling International, pp. 13–20 (2002)Google Scholar
  15. 15.
    Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 160–169 (1990)MATHCrossRefGoogle Scholar
  16. 16.
    Kobbelt, L.: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15, 409–420 (1996)CrossRefGoogle Scholar
  17. 17.
    Loop, C.T.: Smooth ternary subdivision of triangular meshes. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 295–302. Nashboro Press (2003)Google Scholar
  18. 18.
    Dodgson, N.A., Sabin, M.A., Barthe, L., Hassan, M.F.: Towards a ternary interpolating subdivision scheme for the triangular mesh. University of Cambridge Computer Laboratory Technical Report No. 539 (2002)Google Scholar
  19. 19.
    Sabin, M.A.: Eigenanalysis and artifacts of subdivision curves and surfaces. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 69–92. Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Zorin, D., Schröder, P.: A unified framework for primal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 429–454 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oswald, P., Schröder, P.: Composite primal/dual \(\sqrt3\)-subdivision schemes. Computer Aided Geometric Design 20, 135–164 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ivrissimtzis, I.P., Dodgson, N.A., Hassan, M.F., Sabin, M.A.: On the geometry of recursive subdivision. International Journal of Shape Modeling 8, 23–42 (2002)MATHCrossRefGoogle Scholar
  23. 23.
    Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M.A.: Recursive subdivision and hypergeometric functions. In: Proceedings of SMI2002: International Conference on Shape Modelling and Applications, pp. 145–153. IEEE Press, Los Alamitos (2002)Google Scholar
  24. 24.
    Labsik, U., Greiner, G.: Interpolatory \(\sqrt3\)-subdivision. Computer Graphics Forum 19, 131–138 (2000)CrossRefGoogle Scholar
  25. 25.
    Hassan, M.F., Ivrissimtzis, I.P., Dodgson, N.A., Sabin, M.A.: An interpolating 4-point C 2 ternary stationary subdivision scheme. Computer Aided Geometric Design 19, 1–18 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Han, B.: Classification and construction of bivariate subdivision schemes. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 187–197. Nashboro Press (2003)Google Scholar
  27. 27.
    Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. In: ACM Transactions on Graphics, vol. 23, pp. 488–495 (2004); Proc. SIGGRAPH 2004 (2004)Google Scholar
  28. 28.
    Dodgson, N.A., Ivrissimtzis, I.P., Sabin, M.A.: Characteristics of dual \(\sqrt3\) subdivision schemes. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 119–128. Nashboro Press (2003)Google Scholar
  29. 29.
    Niven, I.M.: Irrational Numbers. In: Carus Mathematical Monographs, Wiley, New York (1956)Google Scholar
  30. 30.
    Ivrissimtzis, I.P., Sabin, M.A., Dodgson, N.A.: \(\sqrt5\) subdivision. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 285–299. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Maillot, J., Stam, J.: A unified subdivision scheme for polygonal modeling. Computer Graphics Forum 20, 471–479 (2001)CrossRefGoogle Scholar
  32. 32.
    Dyn, N., Levin, D., Simoens, J.: Face value subdivision schemes on triangulations by repeated averaging. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 129–138. Nashboro Press (2003)Google Scholar
  33. 33.
    Morin, G., Warren, J., Weimer, H.: A subdivision scheme for surfaces of revolution. Computer Aided Geometric Design 18, 483–502 (2001)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Stam, J., Loop, C.: Quad/triangle subdivision. Computer Graphics Forum 22, 79–85 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Neil A. Dodgson
    • 1
  1. 1.University of Cambridge Computer LaboratoryCambridgeUK

Personalised recommendations