An Improved Group Signature Scheme

  • Jianhong Zhang
  • Jiancheng Zou
  • Yumin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3592)

Abstract

As a special digital signature, a group signature scheme allows a group member to sign message on behalf of the group in an anonymous and unlinkability way, In case of a dispute, a designated group manager can reveal the actual identity of the signer. Anonymity and unlinkability are basic properties of group signature, which distinguish other signature schemes. Recently, based on a variant of Nyberg-Rueppel signature and knowledge proof signature, A.Miyaji et al proposed a new group signature scheme over only known-order group and claimed that the scheme is secure. Unfortunately, in this work we first show that the scheme has linkability, Namely, any one can distinguish whether two different group signatures are produced by the same signer, then give the corresponding attack on the scheme. Finally, we propose an improved scheme to overcome the above drawback:linkability and include a novel concept:individual revocation of signatures. At the same time, we give the security analysis of the improved scheme.

Keywords

Group Signature Signature Scheme Group Manager Improve Scheme Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Miyaji, A., Umeda, K.: A fully-functional group signature scheme over only known-order group. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 165–179. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003), http://eprint.iacr.org/2002/173 CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Camenisch, J., Michels, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variant. Technical Report RS-98-27, BRICS, University of Aarhus, NovemberGoogle Scholar
  12. 12.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Canard, S., Traor’e, J.: On fair e-cash systems based on group signature schemes. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 237–248. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  15. 15.
    Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Kiayias, A., Yung, M.: Extracting group signature from traitor tracing schemes. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Kim, H.J., Lim, J.I., Lee, D.H.: Efficient and secure member deletion in group signature schemes. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 150–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jianhong Zhang
    • 1
  • Jiancheng Zou
    • 1
  • Yumin Wang
    • 2
  1. 1.College of sciencesNorth China University of TechnologyBeijingChina
  2. 2.State Key Lab. on ISNXidian UniversityXi’anChina

Personalised recommendations