Advertisement

Adaptive Zooming in Point Set Labeling

  • Sheung-Hung Poon
  • Chan-Su Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3623)

Abstract

A set of points shown on the map usually represents special sites like cities or towns in a country. If the map in the interactive geographical information system (GIS) is browsed by users on the computer screen or on the web, the points and their labels can be viewed in a query window at different resolutions by zooming in or out according to the users’ requirements. How can we make use of the information obtained from different resolutions to avoid doing the whole labeling from scratch every time the zooming factor changes? We investigate this important issue in the interactive GIS system. In this paper, we build low-height hierarchies for one and two dimensions so that optimal and approximating solutions for adaptive zooming queries can be answered efficiently. To the best of our knowledge, no previous results have been known on this issue with theoretical guarantees.

Keywords

Computational geometry GIS map-labeling zooming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications 11, 209–218 (1998)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arikawa, M., Kambayashi, Y., Kai, H.: Adaptive geographic information media using display agents for name placement. Trans. Journal of the Geographic Information Systems Association (1997) (in Japanese)Google Scholar
  3. 3.
    Arikawa, M., Kawakita, H., Kambayashi, Y.: An environment for generating interactive maps with compromises between users’ requirements and limitations of display screens. Trans. Journal of the Geographic Information Systems Association 2 (March 1993) (in Japanese)Google Scholar
  4. 4.
    Chan, T.: A Note on Maximum Independent Sets in Rectangle Intersection Graphs. Information Processing Letters 89(1), 19–23 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chazelle, B., 36 co-authors: The computational geometry impact task force report. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, vol. 223, pp. 407–463. American Mathematical Society, Providence (1999)Google Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  7. 7.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th Annu. ACM Sympos. Comput. Geom., pp. 281–288 (1991)Google Scholar
  8. 8.
    Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    Marks, J., Shieber, S.: The computational complexity of cartographic label placement. Technical report, Harvard CS (1991)Google Scholar
  11. 11.
    Petzold, I., Plumer, L., Heber, M.: Label placement for dynamically generated screen maps. In: Proceedings of the Ottawa ICA, pp. 893–903 (1999)Google Scholar
  12. 12.
    Roy, S., Goswami, P.P., Das, S., Nandy, S.C.: Optimal Algorithm for a Special Point-Labeling Problem. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 110–120. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Computational Geometry: Theory and Applications 13, 21–47 (1999)zbMATHMathSciNetGoogle Scholar
  16. 16.
    van Kreveld, M., van Oostrum, R., Snoeyink, J.: Efficient settlement selection for interactive display. In: Proc. Auto-Carto 13: ACSM/ASPRS Annual Convention Technical Papers, pp. 287–296 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sheung-Hung Poon
    • 1
  • Chan-Su Shin
    • 2
  1. 1.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.School of Electronics and Information, HUFSGyunggi-doKorea

Personalised recommendations