Improved Algorithms and Complexity Results for Power Domination in Graphs

  • Jiong Guo
  • Rolf Niedermeier
  • Daniel Raible
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3623)


The Power Dominating Set problem is a variant of the classical domination problem in graphs: Given an undirected graph G=(V,E), find a minimum P ⊆ V such that all vertices in V are “observed” by vertices in P. Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all but one of its neighbors observed, then the remaining neighbor becomes observed as well. We show that Power Dominating Set can be solved by “bounded-treewidth dynamic programs.” Moreover, we simplify and extend several NP-completeness results, particularly showing that Power Dominating Set remains NP-complete for planar graphs, for circle graphs, and for split graphs. Specifically, our improved reductions imply that Power Dominating Set parameterized by |P| is W[2]-hard and cannot be better approximated than Dominating Set.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for Dominating Set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation — Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  5. 5.
    Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and PTASs. In: Proc. 16th SODA, pp. 590–601 (2005)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Feige, U.: A threshold of ln n for approximating Set Cover. Journal of the ACM 45(4), 634–652 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs: applied to electric power networks. SIAM Journal on Discrete Mathematics 15(4), 519–529 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  10. 10.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination complexity. Technical Report AIB-2004-09, In: Department of Computer Science, RWTH Aachen (December 2004)Google Scholar
  11. 11.
    Kratsch, D.: Algorithms. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.) Domination in Graphs: Advanced Topics, pp. 191–231. Marcel Dekker, New York (1998)Google Scholar
  12. 12.
    Telle, J.A., Proskurowski, A.: Practical algorithms on partial k-trees with an application to domination-like problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 610–621. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jiong Guo
    • 1
  • Rolf Niedermeier
    • 1
  • Daniel Raible
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations