Visualization Tree, Multiple Linked Analytical Decisions

  • José F. RodriguesJr.
  • Agma J. M. Traina
  • Caetano TrainaJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3638)


In this paper we tackle the main problem presented by the majority of Information Visualization techniques, that is, the limited number of data items that can be visualized simultaneously. Our approach proposes an innovative and interactive systematization that can augment the potential for data presentation by utilizing multiple views. These multiple presentation views are kept linked according to the analytical decisions took by the user and are tracked in a tree-like structure. Our emphasis is on developing an intuitive yet powerful system that helps the user to browse the information and to make decisions based both on overview and on detailed perspectives of the data under analysis. The visualization tree keeps track of the interactive actions taken by the user without losing context.


Visualization Technique Information Visualization Structure Query Language Visual Query Visual Clutter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faloutsos, C., Lin, K.: Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: ACM Int’l Conference on Data Management (SIGMOD), Zurich, Switzerland, pp. 163–174. Morgan Kaufmannw, San Francisco (1995)Google Scholar
  2. 2.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining: Towards a unifying framework. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, pp. 82–88. AAAI Press, Menlo Park (1996)Google Scholar
  3. 3.
    Fekete, J.-D., Plaisant, C.: Interactive information visualization of a million items. In: INFOVIS, pp. 117 (2002)Google Scholar
  4. 4.
    Grinstein, G.G., Trutschl, M., Cvek, U.: High-dimensional visualizations. In: Keim, A., Eick, S. (eds.) Knowledge Discovery and Data Mining - Workshop on Visual Data Mining, San Francisco, California, USA (2001)Google Scholar
  5. 5.
    Grinstein, G.G., Ward, M.O.: Introduction to data visualization. In: Fayyad, U., Grinstein, G.G., Wierse, A. (eds.) Information Visualization in Data Mining and Knowledge Discovery, pp. 21–45. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  6. 6.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional geometry. In: IEEE Visualization, vol. 1, pp. 361–370. IEEE Computer Press, Los Alamitos (1990)Google Scholar
  7. 7.
    Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California, pp. 107–116. ACM Press, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Keim, D.A.: Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8(1), 1–8 (2002)CrossRefGoogle Scholar
  9. 9.
    Keim, D.A., Kriegel, H.-P.: Visdb: Database exploration using multidimensional visualization. IEEE Computer Graphics and Applications 14(5), 16–19 (1994)CrossRefGoogle Scholar
  10. 10.
    Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: A comparison. IEEE Transactions in Knowledge and Data Engineering 8(6), 923–938 (1996)CrossRefGoogle Scholar
  11. 11.
    Martin, A.R., Ward, M.O.: High dimensional brushing for interactive exploration of multivariate data. In: 6th IEEE Visualization Conference, Atlanta, Georgia, USA, pp. 271–278 (1995)Google Scholar
  12. 12.
    Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data mining: A survey. IEEE Transactions on Visualization and Computer Graphics (2002)Google Scholar
  13. 13.
    Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases. MIT Press, Cambridge (1991)Google Scholar
  14. 14.
    Rao, R., Card, S.K.: The table lens: Merging graphical and symbolic representation in an interactive focus+context visualization for tabular information. In: Proc. Human Factors in Computing Systems, pp. 318–322 (1994)Google Scholar
  15. 15.
    Rodrigues Jr., J.F., Traina, A.J., Traina Jr., C.: Enhancing data visualization techniques. In: Third IEEE Intl. Workshop on Visual Data Mining - VDM@ICDM 2003, Melbourne, FL, USA, pp. 97–112 (2003)Google Scholar
  16. 16.
    Rundensteiner, A., Ward, M.O., Yang, J., Doshi, P.R.: Xmdv tool: Visual interactive data exploration and trend discovery of high dimensional data sets. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data, Madison, Wisconsin, USA, pp. 631–631. ACM Press, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Swayne, D.F., Cook, D., Buja, A.: Xgobi: Interactive dynamic data visualization in the x window system. Journal of Computational and Graphical Statistics 7(1) (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • José F. RodriguesJr.
    • 1
  • Agma J. M. Traina
    • 1
  • Caetano TrainaJr.
    • 1
  1. 1.University of São Paulo at São CarlosCentroBrazil

Personalised recommendations